Suppr超能文献

人工智能在全膝关节和单髁膝关节置换术中的应用。

Artificial intelligence in total and unicompartmental knee arthroplasty.

机构信息

Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, Rome, 200 - 00128, Italy.

Department of Medicine and Surgery, Research Unit of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, Rome, 21 - 00128, Italy.

出版信息

BMC Musculoskelet Disord. 2024 Jul 22;25(1):571. doi: 10.1186/s12891-024-07516-9.

Abstract

The application of Artificial intelligence (AI) and machine learning (ML) tools in total (TKA) and unicompartmental knee arthroplasty (UKA) emerges with the potential to improve patient-centered decision-making and outcome prediction in orthopedics, as ML algorithms can generate patient-specific risk models. This review aims to evaluate the potential of the application of AI/ML models in the prediction of TKA outcomes and the identification of populations at risk.An extensive search in the following databases: MEDLINE, Scopus, Cinahl, Google Scholar, and EMBASE was conducted using the PIOS approach to formulate the research question. The PRISMA guideline was used for reporting the evidence of the data extracted. A modified eight-item MINORS checklist was employed for the quality assessment. The databases were screened from the inception to June 2022.Forty-four out of the 542 initially selected articles were eligible for the data analysis; 5 further articles were identified and added to the review from the PUBMED database, for a total of 49 articles included. A total of 2,595,780 patients were identified, with an overall average age of the patients of 70.2 years ± 7.9 years old. The five most common AI/ML models identified in the selected articles were: RF, in 38.77% of studies; GBM, in 36.73% of studies; ANN in 34.7% of articles; LR, in 32.65%; SVM in 26.53% of articles.This systematic review evaluated the possible uses of AI/ML models in TKA, highlighting their potential to lead to more accurate predictions, less time-consuming data processing, and improved decision-making, all while minimizing user input bias to provide risk-based patient-specific care.

摘要

人工智能 (AI) 和机器学习 (ML) 工具在全膝关节置换术 (TKA) 和单髁膝关节置换术 (UKA) 中的应用具有改善骨科患者为中心的决策和结果预测的潜力,因为 ML 算法可以生成患者特异性风险模型。本综述旨在评估 AI/ML 模型在 TKA 结果预测和识别风险人群中的应用潜力。

我们采用 PIOS 方法在以下数据库中进行了广泛的检索:MEDLINE、Scopus、Cinahl、Google Scholar 和 EMBASE,以制定研究问题。采用 PRISMA 指南报告提取数据的证据。使用改良的八项 MINORS 清单评估质量。从开始到 2022 年 6 月筛选数据库。

最初选择的 542 篇文章中有 44 篇符合数据分析条件;从 PUBMED 数据库中又确定并添加了 5 篇文章,共纳入 49 篇文章。总共确定了 2595780 名患者,患者的平均年龄为 70.2±7.9 岁。在选定的文章中,确定了五个最常见的 AI/ML 模型:随机森林 (RF),占 38.77%;梯度提升机 (GBM),占 36.73%;人工神经网络 (ANN),占 34.7%;逻辑回归 (LR),占 32.65%;支持向量机 (SVM),占 26.53%。

本系统评价评估了 AI/ML 模型在 TKA 中的可能用途,强调了它们在提供基于风险的个体化护理方面具有提高预测准确性、减少耗时的数据处理和改善决策制定的潜力,同时最大限度地减少用户输入偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d9a/11265144/85f7e58689bf/12891_2024_7516_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验