Azfar Mujahid, Gao Weiman, Van den Haute Chris, Xiao Lin, Karsa Mawar, Pandher Ruby, Karsa Ayu, Spurling Dayna, Ronca Emma, Bongers Angelika, Guo Xinyi, Mayoh Chelsea, Fayt Youri, Schoofs Arthur, Burns Mark R, Verhelst Steven H L, Norris Murray D, Haber Michelle, Vangheluwe Peter, Somers Klaartje
Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.
Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Australia.
Mol Oncol. 2025 Mar;19(3):913-936. doi: 10.1002/1878-0261.13789. Epub 2025 Feb 21.
High-risk neuroblastomas, often associated with MYCN protooncogene amplification, are addicted to polyamines, small polycations vital for cellular functioning. We have previously shown that neuroblastoma cells increase polyamine uptake when exposed to the polyamine biosynthesis inhibitor difluoromethylornithine (DFMO), and this mechanism is thought to limit the efficacy of the drug in clinical trials. This finding resulted in the clinical development of polyamine transport inhibitors, including AMXT 1501, which is presently under clinical investigation in combination with DFMO. However, the mechanisms and transporters involved in DFMO-induced polyamine uptake are unknown. Here, we report that knockdown of ATPase 13A3 (ATP13A3), a member of the P5B-ATPase polyamine transporter family, limited basal and DFMO-induced polyamine uptake, attenuated MYCN-amplified and non-MYCN-amplified neuroblastoma cell growth, and potentiated the inhibitory effects of DFMO. Conversely, overexpression of ATP13A3 in neuroblastoma cells increased polyamine uptake, which was inhibited by AMXT 1501, highlighting ATP13A3 as a key target of the drug. An association between high ATP13A3 expression and poor survival in neuroblastoma further supports a role of this transporter in neuroblastoma progression. Thus, this study identified ATP13A3 as a critical regulator of basal and DFMO-induced polyamine uptake and a novel therapeutic target for neuroblastoma.
高危神经母细胞瘤通常与MYCN原癌基因扩增相关,对多胺成瘾,多胺是对细胞功能至关重要的小聚阳离子。我们之前已经表明,神经母细胞瘤细胞在暴露于多胺生物合成抑制剂二氟甲基鸟氨酸(DFMO)时会增加多胺摄取,并且这种机制被认为会限制该药物在临床试验中的疗效。这一发现促使了多胺转运抑制剂的临床开发,包括AMXT 1501,目前它正与DFMO联合进行临床研究。然而,DFMO诱导的多胺摄取所涉及的机制和转运体尚不清楚。在此,我们报告,P5B - ATP酶多胺转运体家族成员ATPase 13A3(ATP13A3)的敲低限制了基础和DFMO诱导的多胺摄取,减弱了MYCN扩增和非MYCN扩增的神经母细胞瘤细胞生长,并增强了DFMO的抑制作用。相反,神经母细胞瘤细胞中ATP13A3的过表达增加了多胺摄取,而这被AMXT 1501抑制,突出了ATP13A3作为该药物的关键靶点。神经母细胞瘤中ATP13A3高表达与不良生存之间的关联进一步支持了该转运体在神经母细胞瘤进展中的作用。因此,本研究确定ATP13A3是基础和DFMO诱导的多胺摄取的关键调节因子,也是神经母细胞瘤的一个新的治疗靶点。