Zhao Yi-Chang, Zhang Yu-Kun, Gao Wen, Liu Huai-Yuan, Xiao Chen-Lin, Hou Jing-Jing, Li Jia-Kai, Zhang Bi-Kui, Xiang Da-Xiong, Sandaradura Indy, Yan Miao
Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Hunan, China.
International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
Sci Rep. 2025 Feb 21;15(1):6389. doi: 10.1038/s41598-025-91356-7.
Solid transplant recipients are at increased risk for invasive aspergillosis. Tacrolimus and Voriconazole is one of the most frequently utilized treatments for those recipients with invasive fungal infections. However, it is difficult to use them properly due to the interaction between them. This study aimed to investigate the potential drug-drug interaction between Tacrolimus and Voriconazole by multiple methods, including in vitro liver microsome method and the PBPK(Physiologically Based Pharmacokinetic) model. Midazolam and testosterone were used as probe substrates to evaluate individual differences in CYP3A4/5 metabolic activity. A comprehensive interaction analysis was also conducted based on the STITCH database and the DD-Inter system. Furthermore, a PBPK model was constructed by the data from the literature to simulate the real metabolic process in vivo. The research employed multiple methodologies to demonstrate that the co-administration of Voriconazole significantly enhances Tacrolimus concentrations, considering genotypes and the activity of CYP3A4/5 genotypes. The findings indicated a decrease in the relative percentages of midazolam and testosterone metabolites with increasing Voriconazole concentration. Moreover, the results for residual Tacrolimus in the 30-minute incubation group revealed that Voriconazole exerts a mild inhibitory effect on the in vitro metabolism of Tacrolimus. The STITCH database and DD-Inter system analysis also suggested that Tacrolimus and Voriconazole share a strong association in liver metabolism, most likely interacting with CYP3A4/5 and CYP2C19. Furthermore, the result of PBPK analysis indicated that Tacrolimus AUC increases with Voriconazole co-therapy. Moreover, the AUC of Tacrolimus in intermediate CYP2C19 metabolizers (IM) was the highest at 10.1 µmol·min/L, followed by poor metabolizers (PM) at 8.13 µmol·min/L, and extensive metabolizers (EM) at 2.18 µmol·min/L. And the genotype of CYP3A5 poor metabolizer (PM) had AUC of Tacrolimus at 3.13µmol·min/L and extensive metabolizer (EM) at 2.18µmol·min/L. Microsomal studies, PBPK models, and multiple other analyses have comprehensively elucidated the impact of Voriconazole on Tacrolimus concentrations. These findings can serve as a valuable point of reference for concurrently administering these two medications. These findings also indicate that the genotypes of CYP2C19 play an important role in the development of DDI during concurrent Tacrolimus and Voriconazole treatment, which may have some guidance for clinical medication.
实体器官移植受者发生侵袭性曲霉病的风险增加。他克莫司和伏立康唑是治疗这些侵袭性真菌感染受者最常用的药物之一。然而,由于它们之间的相互作用,很难正确使用。本研究旨在通过多种方法,包括体外肝微粒体法和基于生理的药代动力学(PBPK)模型,研究他克莫司和伏立康唑之间潜在的药物相互作用。使用咪达唑仑和睾酮作为探针底物来评估CYP3A4/5代谢活性的个体差异。还基于STITCH数据库和DD-Inter系统进行了全面的相互作用分析。此外,根据文献数据构建了PBPK模型,以模拟体内真实的代谢过程。该研究采用多种方法证明,考虑到基因型和CYP3A4/5基因型的活性,伏立康唑的联合使用显著提高了他克莫司的浓度。研究结果表明,随着伏立康唑浓度的增加,咪达唑仑和睾酮代谢物的相对百分比降低。此外,30分钟孵育组中他克莫司的残留结果显示,伏立康唑对他克莫司的体外代谢有轻微抑制作用。STITCH数据库和DD-Inter系统分析还表明,他克莫司和伏立康唑在肝脏代谢中存在很强的关联,很可能与CYP3A4/5和CYP2C19相互作用。此外,PBPK分析结果表明,伏立康唑联合治疗时他克莫司的AUC增加。此外,CYP2C19中间代谢者(IM)中他克莫司的AUC最高,为10.1µmol·min/L,其次是代谢不良者(PM),为8.13µmol·min/L,广泛代谢者(EM)为2.18µmol·min/L。CYP3A5代谢不良者(PM)基因型中他克莫司的AUC为3.13µmol·min/L,广泛代谢者(EM)为2.18µmol·min/L。微粒体研究、PBPK模型和其他多项分析全面阐明了伏立康唑对他克莫司浓度的影响。这些发现可为同时使用这两种药物提供有价值的参考。这些发现还表明,CYP2C19基因型在他克莫司和伏立康唑联合治疗期间药物相互作用的发生中起重要作用,这可能对临床用药有一定的指导意义。