Suppr超能文献

Electrophysiology of identified neurosecretory and non-neurosecretory cells in the cockroach pars intercerebralis.

作者信息

Krauthamer V

出版信息

J Exp Zool. 1985 May;234(2):207-19. doi: 10.1002/jez.1402340206.

Abstract

Two cell types can be distinguished with intracellular recording from the pars intercerebralis of the American cockroach (Periplaneta americana). The first type, which corresponds morphologically to the medial neurosecretory cell, always had spontaneously occurring, overshooting action potentials. These action potentials are probably endogenously produced. Tetrodotoxin experiments revealed that sodium is the dominant ion of the action potential. The action potentials are followed by a relatively long after-hyperpolarization. The input resistance of these cells ranged from 120 to 390 M omega. A mathematical model, based on cellular morphology and response to current pulses, revealed a membrane time constant of about 100 msec and an axonal:somatic conductance ratio of approximately 13. Area-specific membrane resistance was estimated at 33 k omega cm2. These cells also often had reversible and spontaneous inhibitory postsynaptic potentials. The second cell type, which is non-neurosecretory, never produced spontaneous action potentials and rarely had synaptic potentials. Action potentials could be evoked by current injection into the cell body or by extracellular stimulation of their axons in the posteroventral portion of the the protocerebrum. These action potentials also depend on sodium ions. Their input resistance ranged from 16 to 35 M omega. They had a membrane time constant of approximately 15 msec and an axonal:somatic conductance ratio of about 9. Their area specific membrane resistance was estimated at 14 k omega cm2.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验