Suppr超能文献

机器学习和计算流体动力学衍生的血流储备分数CT在冠心病患者中显示出相当的诊断性能;一项系统评价和荟萃分析。

Machine learning and computational fluid dynamics derived FFRCT demonstrate comparable diagnostic performance in patients with coronary artery disease; A Systematic Review and Meta-Analysis.

作者信息

Narimani-Javid Roozbeh, Moradi Mehdi, Mahalleh Mehrdad, Najafi-Vosough Roya, Arzhangzadeh Alireza, Khalique Omar, Mojibian Hamid, Kuno Toshiki, Mohsen Amr, Alam Mahboob, Shafiei Sasan, Khansari Nakisa, Shaghaghi Zahra, Nozhat Salma, Hosseini Kaveh, Hosseini Seyed Kianoosh

机构信息

Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Department of Cardiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.

出版信息

J Cardiovasc Comput Tomogr. 2025 Mar-Apr;19(2):232-246. doi: 10.1016/j.jcct.2025.02.004. Epub 2025 Feb 22.

Abstract

BACKGROUND

As a new noninvasive diagnostic technique, computed tomography-derived fraction flow reserve (FFRCT) has been used to identify hemodynamically significant coronary artery stenosis. FFRCT can be calculated using computational fluid dynamics (CFD) or machine learning (ML) approaches. It was hypothesized that ML-based FFRCT (FFRCT) has comparable diagnostic performance with CFD-based FFRCT (FFRCT). We used invasive FFR as the reference test to evaluate the diagnostic performance of FFRCT vs. FFRCT.

METHODS

We searched PubMed, Cochrane Library, EMBASE, WOS, and Scopus for articles published until March 2024. We analyzed the synthesized sensitivity, specificity, and diagnostic odds ratio (DOR) of FFRCT vs FFRCT at both the patient and vessel levels. We generated summary receiver operating characteristic curves (SROC) and then calculated the area under the curve (AUC).

RESULTS

This meta-analysis included 23 studies reporting FFRCT diagnostic performance and 18 studies reporting FFRCT diagnostic performance. In the FFRCT group, 2501 patients and 3764 vessels or lesions were analyzed. In the FFRCT group, 1323 patients and 4194 vessels or lesions were analyzed. Our results showed that at the per-patient level, FFRCT and FFRCT had comparable pooled specificity (Z ​= ​-0.59, P ​= ​0.55) and AUC (P ​= ​0.5). At the per-vessel level, FFRCTCFD and FFRCTML also showed comparable specificity (Z ​= ​0.94, P ​= ​0.34), DOR (Z ​= ​0.7, P ​= ​0.48), and AUC (P ​= ​0.74). However, the sensitivity of FFRCT was significantly lower compared to FFRCT at both patient (Z ​= ​-3.85, P ​= ​0.0001) and vessel (Z ​= ​-2.05, P ​= ​0.04) levels.

CONCLUSION

The FFRCT technique was comparable to standard CFD approaches in terms of AUC and specificity. However, it did not achieve the same level of sensitivity as FFRCT.

摘要

背景

作为一种新的无创诊断技术,计算机断层扫描衍生的血流储备分数(FFRCT)已被用于识别具有血流动力学意义的冠状动脉狭窄。FFRCT可以使用计算流体动力学(CFD)或机器学习(ML)方法来计算。据推测,基于ML的FFRCT(FFRCT)与基于CFD的FFRCT(FFRCT)具有相当的诊断性能。我们使用有创FFR作为参考测试来评估FFRCT与FFRCT的诊断性能。

方法

我们在PubMed、Cochrane图书馆、EMBASE、WOS和Scopus中检索截至2024年3月发表的文章。我们分析了在患者和血管水平上FFRCT与FFRCT的综合敏感性、特异性和诊断比值比(DOR)。我们生成了汇总的受试者工作特征曲线(SROC),然后计算曲线下面积(AUC)。

结果

这项荟萃分析包括23项报告FFRCT诊断性能的研究和18项报告FFRCT诊断性能的研究。在FFRCT组中,分析了2501例患者和3764条血管或病变。在FFRCT组中,分析了1323例患者和4194条血管或病变。我们的结果表明,在患者水平上,FFRCT和FFRCT具有相当的合并特异性(Z = -0.59,P = 0.55)和AUC(P = 0.5)。在血管水平上,FFRCTCFD和FFRCTML也显示出相当的特异性(Z = 0.94,P = 0.34)、DOR(Z = 0.7,P = 0.48)和AUC(P = 0.74)。然而,在患者(Z = -3.85,P = 0.0001)和血管(Z = -2.05,P = 0.04)水平上,FFRCT的敏感性均显著低于FFRCT。

结论

FFRCT技术在AUC和特异性方面与标准CFD方法相当。然而,它没有达到与FFRCT相同水平的敏感性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验