Suppr超能文献

生物统计学中多重性调整的基本原理。

The fundamentals of multiplicity adjustment in biostatistics.

作者信息

Izmirlian Grant, Sirota Lev A, Berger Vance W, Kipnis Victor

机构信息

Biometry Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States.

出版信息

J Natl Cancer Inst Monogr. 2025 Mar 1;2025(68):10-13. doi: 10.1093/jncimonographs/lgae050.

Abstract

The statistical problem of multiplicity is concerned with making protected multiple inferences and their valid interpretation in a particular study. Most discussions of multiplicity focus on the increase of type I error rate if testing is done without any adjustment, with only a few papers discussing its ramifications for type II errors/power. We provide a survey of main approaches to protected inference in biomedical studies, touching on procedures to control the family-wise error rate, false discovery rate, as well as false discovery exceedance probability. We discuss several notions of power including total power, average power, and power defined as exceedance probability for the true positive proportion. We provide commentary on best practices for adjusting for multiplicity in both type I and type II errors within families defined by primary, secondary, and exploratory endpoints in clinical trials and in experimental studies.

摘要

多重性的统计学问题涉及在特定研究中进行受保护的多重推断及其有效解释。大多数关于多重性的讨论都集中在如果不进行任何调整就进行检验时I型错误率的增加上,只有少数论文讨论了其对II型错误/功效的影响。我们对生物医学研究中受保护推断的主要方法进行了综述,涉及控制家族性错误率、错误发现率以及错误发现超越概率的程序。我们讨论了几种功效的概念,包括总功效、平均功效以及定义为真阳性比例超越概率的功效。我们对在临床试验和实验研究中由主要、次要和探索性终点定义的家族内调整I型和II型错误中的多重性的最佳实践进行了评论。

相似文献

1
The fundamentals of multiplicity adjustment in biostatistics.
J Natl Cancer Inst Monogr. 2025 Mar 1;2025(68):10-13. doi: 10.1093/jncimonographs/lgae050.
2
When to adjust for multiplicity in cancer clinical trials.
J Natl Cancer Inst Monogr. 2025 Mar 1;2025(68):3-9. doi: 10.1093/jncimonographs/lgae051.
4
Multiple secondary outcome analyses: precise interpretation is important.
Trials. 2022 Jan 10;23(1):27. doi: 10.1186/s13063-021-05975-2.
5
Power and sample size when multiple endpoints are considered.
Pharm Stat. 2007 Jul-Sep;6(3):161-70. doi: 10.1002/pst.301.
6
Weighted false discovery rate controlling procedures for clinical trials.
Biostatistics. 2017 Jan;18(1):91-104. doi: 10.1093/biostatistics/kxw030. Epub 2016 Jul 21.
7
[Multiplicity of inferences in clinical trials: adjustment methods, clinical interpretation issues].
Med Sci (Paris). 2004 Feb;20(2):231-5. doi: 10.1051/medsci/2004202231.
8
The issue of multiplicity in noninferiority studies.
Clin Trials. 2012 Dec;9(6):730-5. doi: 10.1177/1740774512455370. Epub 2012 Aug 9.
9
Methods for the analysis of multiple endpoints in small populations: A review.
J Biopharm Stat. 2019;29(1):1-29. doi: 10.1080/10543406.2018.1489402. Epub 2018 Jul 9.
10
False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies.
J Clin Epidemiol. 2014 Aug;67(8):850-7. doi: 10.1016/j.jclinepi.2014.03.012. Epub 2014 May 13.

本文引用的文献

1
Adjustment of p values for multiple hypotheses: why, when and how.
Ann Rheum Dis. 2024 Sep 30;83(10):1254-1255. doi: 10.1136/ard-2024-225537.
2
3
10 Years of GWAS Discovery: Biology, Function, and Translation.
Am J Hum Genet. 2017 Jul 6;101(1):5-22. doi: 10.1016/j.ajhg.2017.06.005.
4
Traditional multiplicity adjustment methods in clinical trials.
Stat Med. 2013 Dec 20;32(29):5172-218. doi: 10.1002/sim.5990. Epub 2013 Sep 30.
5
Mapping and quantifying mammalian transcriptomes by RNA-Seq.
Nat Methods. 2008 Jul;5(7):621-8. doi: 10.1038/nmeth.1226. Epub 2008 May 30.
6
Quick calculation for sample size while controlling false discovery rate with application to microarray analysis.
Bioinformatics. 2007 Mar 15;23(6):739-46. doi: 10.1093/bioinformatics/btl664. Epub 2007 Jan 19.
7
Sample size for FDR-control in microarray data analysis.
Bioinformatics. 2005 Jul 15;21(14):3097-104. doi: 10.1093/bioinformatics/bti456. Epub 2005 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验