Izmirlian Grant, Sirota Lev A, Berger Vance W, Kipnis Victor
Biometry Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States.
J Natl Cancer Inst Monogr. 2025 Mar 1;2025(68):10-13. doi: 10.1093/jncimonographs/lgae050.
The statistical problem of multiplicity is concerned with making protected multiple inferences and their valid interpretation in a particular study. Most discussions of multiplicity focus on the increase of type I error rate if testing is done without any adjustment, with only a few papers discussing its ramifications for type II errors/power. We provide a survey of main approaches to protected inference in biomedical studies, touching on procedures to control the family-wise error rate, false discovery rate, as well as false discovery exceedance probability. We discuss several notions of power including total power, average power, and power defined as exceedance probability for the true positive proportion. We provide commentary on best practices for adjusting for multiplicity in both type I and type II errors within families defined by primary, secondary, and exploratory endpoints in clinical trials and in experimental studies.
多重性的统计学问题涉及在特定研究中进行受保护的多重推断及其有效解释。大多数关于多重性的讨论都集中在如果不进行任何调整就进行检验时I型错误率的增加上,只有少数论文讨论了其对II型错误/功效的影响。我们对生物医学研究中受保护推断的主要方法进行了综述,涉及控制家族性错误率、错误发现率以及错误发现超越概率的程序。我们讨论了几种功效的概念,包括总功效、平均功效以及定义为真阳性比例超越概率的功效。我们对在临床试验和实验研究中由主要、次要和探索性终点定义的家族内调整I型和II型错误中的多重性的最佳实践进行了评论。