Suppr超能文献

用于临床试验的加权错误发现率控制程序。

Weighted false discovery rate controlling procedures for clinical trials.

作者信息

Benjamini Yoav, Cohen Rami

机构信息

Department of Statistics and Operations Research, The Sackler Faculty of Exact Sciences and The Sagol School for Neurosciences, Tel Aviv University, Tel Aviv 39040, Israel

Department of Statistics and Operations Research, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 39040, Israel.

出版信息

Biostatistics. 2017 Jan;18(1):91-104. doi: 10.1093/biostatistics/kxw030. Epub 2016 Jul 21.

Abstract

Having identified that the lack of replicability of results in earlier phases of clinical medical research stems largely from unattended selective inference, we offer a new hierarchical weighted false discovery rate controlling testing procedure alongside the single-level weighted procedure. These address the special structure of clinical research, where the comparisons of treatments involve both primary and secondary endpoints, by assigning weights that reflect the relative importance of the endpoints in the error being controlled. In the hierarchical method, the primary endpoints and a properly weighted intersection hypothesis that represents all secondary endpoints are tested. Should the intersection hypothesis be among the rejected, individual secondary endpoints are tested. We identify configurations where each of the two procedures has the advantage. Both offer higher power than competing hierarchical (gatekeeper) familywise error-rate controlling procedures being used for drug approval. By their design, the advantage of the proposed methods is the increased power to discover effects on secondary endpoints, without giving up the rigor of addressing their multiplicity.

摘要

在确定临床医学研究早期阶段结果缺乏可重复性主要源于未注意到的选择性推断后,我们提出了一种新的分层加权错误发现率控制检验程序以及单水平加权程序。这些程序针对临床研究的特殊结构,即治疗比较涉及主要和次要终点,通过分配反映终点在被控制误差中的相对重要性的权重来解决。在分层方法中,对主要终点和代表所有次要终点的适当加权交集假设进行检验。如果交集假设被拒绝,则对各个次要终点进行检验。我们确定了两种程序各自具有优势的配置。两者都比用于药物批准的竞争性分层(把关人)家族性错误率控制程序具有更高的检验效能。通过其设计,所提出方法的优势在于发现次要终点效应的检验效能增加,同时又不放弃处理其多重性的严谨性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d9e/5255051/b6541d0ccc59/kxw030F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验