Lin Yi, Yang Fan, Wang Xiaotong, Zhong Linfeng, Yu Dingshan
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 528478, China.
Adv Mater. 2025 Apr;37(13):e2415608. doi: 10.1002/adma.202415608. Epub 2025 Feb 24.
Coupling solar into metal-air batteries represents an appealing paradigm for storing intermittent solar energy and boosting device energy efficiency. Current solar-coupled metal-air systems rely on UV or visible light harvesting and suffer from inferior charge separation ability and limited solar utilization. Additionally, sunlight action behavior/mechanism in some useful scenarios (seawater electrolytes, low-temperature) is underexplored. Herein, through gradient homojunction design via donor-acceptor (D-A) engineering, it exploits a novel full-spectrum-responsive polymer homojunction photoelectrode (PGH) for sunlight-coupled seawater-electrolyte-based Zn/Na-air batteries (Zn-SWAB/Na-SWAB) with boosted sunlight utilization and energy efficiency at lower temperatures. By stacking three pre-designed analogous [A-D]-[A-D] copolymers with gradient energy-levels and rich heterocycles, PGH integrates separate metal-free active sites for oxygen reduction/evolution reaction (ORR/OER), efficient photothermal effect with full-spectrum-absorption, and superior photoelectric effect with high charge-separation efficiency. Thus, PGH under simulated-sunlight produces remarkably-enhanced photocurrent up to 3.2 and 21.4 times during ORR/OER in near-neutral electrolytes. This endows sunlight-coupled PGH-enabled Zn-SWAB and Na-SWAB with low voltage gaps of 0.08/0.25 V at room temperature, and 0.21/0.43 V at 0 °C - both of which surpass most reported room-temperature results. Their energy efficiencies (84.6%/86.8%) at 0 °C even approach their room-temperature counterparts (93.9%/92.3%). Mechanistic studies reveal photoelectric/photothermal dual-promoted bidirectional oxygen catalysis responsible for intriguing performance.
将太阳能与金属空气电池相结合是一种储存间歇性太阳能和提高设备能源效率的有吸引力的模式。目前的太阳能耦合金属空气系统依赖于紫外光或可见光的收集,且存在电荷分离能力较差和太阳能利用率有限的问题。此外,在一些有用的场景(如海水电解质、低温环境)中,阳光的作用行为/机制尚未得到充分探索。在此,通过供体-受体(D-A)工程进行梯度同质结设计,开发了一种新型的全光谱响应聚合物同质结光电极(PGH),用于基于阳光耦合海水电解质的锌/钠空气电池(Zn-SWAB/Na-SWAB),在较低温度下提高了阳光利用率和能源效率。通过堆叠三种预先设计的具有梯度能级和丰富杂环的类似[A-D]-[A-D]共聚物,PGH整合了用于氧还原/析出反应(ORR/OER)的独立无金属活性位点、具有全光谱吸收的高效光热效应以及具有高电荷分离效率的优异光电效应。因此,在模拟阳光下,PGH在近中性电解质中进行ORR/OER时产生的光电流显著增强,分别高达3.2倍和21.4倍。这使得基于阳光耦合PGH的Zn-SWAB和Na-SWAB在室温下的低电压间隙为0.08/0.25 V,在0°C时为0.21/0.43 V,均超过了大多数已报道的室温结果。它们在0°C时的能量效率(84.6%/86.8%)甚至接近其室温下的对应值(93.9%/92.3%)。机理研究揭示了光电/光热双重促进的双向氧催化作用是其优异性能的原因。