Liu Chang, Downey Ryan J, Salminen Jacob S, Rojas Sofia Arvelo, Richer Natalie, Pliner Erika M, Hwang Jungyun, Cruz-Almeida Yenisel, Manini Todd M, Hass Chris J, Seidler Rachael D, Clark David J, Ferris Daniel P
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.
McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
Imaging Neurosci (Camb). 2024;2. doi: 10.1162/imag_a_00097. Epub 2024 Feb 22.
Mobile brain imaging with high-density electroencephalography (EEG) can provide insight into the cortical processes involved in complex human walking tasks. While uneven terrain is common in the natural environment and poses challenges to human balance control, there is limited understanding of the supraspinal processes involved with traversing uneven terrain. The primary objective of this study was to quantify electrocortical activity related to parametric variations in terrain unevenness for neurotypical young adults. We used high-density EEG to measure brain activity when 32 young adults walked on a novel custom-made uneven terrain treadmill surface with four levels of difficulty at a walking speed tailored to each participant. We identified multiple brain regions associated with uneven terrain walking. Alpha (8 - 13 Hz) and beta (13 - 30 Hz) spectral power decreased in the sensorimotor and posterior parietal areas with increasing terrain unevenness while theta (4 - 8 Hz) power increased in the mid/posterior cingulate area with terrain unevenness. We also found that within stride spectral power fluctuations increased with terrain unevenness. Our secondary goal was to investigate the effect of parametric changes in walking speed (0.25 m/s, 0.5 m/s, 0.75 m/s, 1.0 m/s) to differentiate the effects of walking speed from uneven terrain. Our results revealed that electrocortical activities only changed substantially with speed within the sensorimotor area but not in other brain areas. Together, these results indicate there are distinct cortical processes contributing to the control of walking over uneven terrain versus modulation of walking speed on smooth, flat terrain. Our findings increase our understanding of cortical involvement in an ecologically valid walking task and could serve as a benchmark for identifying deficits in cortical dynamics that occur in people with mobility deficits.
利用高密度脑电图(EEG)进行的移动脑成像能够深入了解复杂人类行走任务中涉及的皮质过程。虽然自然环境中地形不平是常见现象,且对人类平衡控制构成挑战,但对于跨越不平地形所涉及的脊髓上过程的了解却很有限。本研究的主要目的是量化与神经典型的年轻成年人在地形不平度参数变化相关的脑电活动。我们使用高密度脑电图来测量32名年轻成年人在一台新型定制的不平地形跑步机表面行走时的大脑活动,该跑步机表面有四个难度级别,行走速度根据每个参与者进行了调整。我们确定了多个与不平地形行走相关的脑区。随着地形不平度增加,感觉运动区和顶叶后部区域的α(8 - 13赫兹)和β(13 - 30赫兹)频谱功率降低,而中/后扣带区的θ(4 - 8赫兹)功率随着地形不平度增加而增加。我们还发现,步幅内频谱功率波动随着地形不平度增加而增大。我们的次要目标是研究行走速度(0.25米/秒、0.5米/秒、0.75米/秒、1.0米/秒)参数变化的影响,以区分行走速度与不平地形的影响。我们的结果表明,仅感觉运动区内的脑电活动随速度有显著变化,而其他脑区则没有。总之,这些结果表明,在控制跨越不平地形行走与在平坦光滑地形上调节行走速度方面,存在不同的皮质过程。我们的发现增进了我们对皮质在生态有效行走任务中参与情况的理解,并可作为识别行动能力受损人群中皮质动力学缺陷的基准。