文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

地面跑步过程中无线移动脑电图运动伪迹去除方法的比较

A Comparison of Approaches for Motion Artifact Removal from Wireless Mobile EEG During Overground Running.

作者信息

Ledwidge Patrick S, McPherson Carly N, Faulkenberg Lily, Morgan Alexander, Baylis Gordon C

机构信息

Department of Psychological Sciences, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA.

Department of Allied Health, Sport & Wellness, Baldwin Wallace University, 275 Eastland Rd., Berea, OH 44017, USA.

出版信息

Sensors (Basel). 2025 Aug 5;25(15):4810. doi: 10.3390/s25154810.


DOI:10.3390/s25154810
PMID:40807974
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12349273/
Abstract

Electroencephalography (EEG) is the only brain imaging method light enough and with the temporal precision to assess electrocortical dynamics during human locomotion. However, head motion during whole-body movements produces artifacts that contaminate the EEG and reduces ICA decomposition quality. We compared commonly used motion artifact removal approaches for reducing the motion artifact from the EEG during running and identifying stimulus-locked ERP components during an adapted flanker task. EEG was recorded from young adults during dynamic jogging and static standing versions of the Flanker task. Motion artifact removal approaches were evaluated based on their ICA's component dipolarity, power changes at the gait frequency and harmonics, and ability to capture the expected P300 ERP congruency effect. Preprocessing the EEG using either iCanClean with pseudo-reference noise signals or artifact subspace reconstruction (ASR) led to the recovery of more dipolar brain independent components. In our analyses, iCanClean was somewhat more effective than ASR. Power was significantly reduced at the gait frequency after preprocessing with ASR and iCanClean. Finally, preprocessing using ASR and iCanClean also produced ERP components similar in latency to those identified in the standing flanker task. The expected greater P300 amplitude to incongruent flankers was identified when preprocessing using iCanClean. ASR and iCanClean may provide effective preprocessing methods for reducing motion artifacts in human locomotion studies during running.

摘要

脑电图(EEG)是唯一一种足够轻便且具有时间精度,能够在人类运动过程中评估皮层电动力学的脑成像方法。然而,全身运动过程中的头部运动会产生伪迹,这些伪迹会干扰脑电图并降低独立成分分析(ICA)分解的质量。我们比较了常用的运动伪迹去除方法,以减少跑步过程中脑电图的运动伪迹,并在适应性侧翼任务中识别与刺激锁定的事件相关电位(ERP)成分。在侧翼任务的动态慢跑和静态站立版本中,记录了年轻成年人的脑电图。基于ICA的成分偶极性、步态频率及其谐波处的功率变化,以及捕捉预期的P300 ERP一致性效应的能力,对运动伪迹去除方法进行了评估。使用带有伪参考噪声信号的iCanClean或伪迹子空间重建(ASR)对脑电图进行预处理,可恢复更多偶极的脑独立成分。在我们的分析中,iCanClean比ASR稍有效。使用ASR和iCanClean预处理后,步态频率处的功率显著降低。最后,使用ASR和iCanClean进行预处理也产生了潜伏期与站立侧翼任务中识别出的ERP成分相似的ERP成分。使用iCanClean进行预处理时,发现了预期的对不一致侧翼刺激更大的P300波幅。ASR和iCanClean可能为减少跑步过程中人类运动研究中的运动伪迹提供有效的预处理方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a3/12349273/5f62acd25b00/sensors-25-04810-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a3/12349273/75bc3fffc595/sensors-25-04810-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a3/12349273/adfe29739554/sensors-25-04810-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a3/12349273/76cc5e0bb729/sensors-25-04810-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a3/12349273/47c50c794487/sensors-25-04810-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a3/12349273/ab7b82d66a69/sensors-25-04810-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a3/12349273/5f62acd25b00/sensors-25-04810-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a3/12349273/75bc3fffc595/sensors-25-04810-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a3/12349273/adfe29739554/sensors-25-04810-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a3/12349273/76cc5e0bb729/sensors-25-04810-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a3/12349273/47c50c794487/sensors-25-04810-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a3/12349273/ab7b82d66a69/sensors-25-04810-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a3/12349273/5f62acd25b00/sensors-25-04810-g006.jpg

相似文献

[1]
A Comparison of Approaches for Motion Artifact Removal from Wireless Mobile EEG During Overground Running.

Sensors (Basel). 2025-8-5

[2]
Assessing the impact of artifact correction and artifact rejection on the performance of SVM- and LDA-based decoding of EEG signals.

Neuroimage. 2025-8-1

[3]
Artifact-reference multivariate backward regression (ARMBR): a novel method for EEG blink artifact removal with minimal data requirements.

J Neural Eng. 2025-6-26

[4]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[5]
Eye-movement artifact correction in infant EEG: A systematic comparison between ICA and Artifact Blocking.

J Neurosci Methods. 2025-6

[6]
Automated preprocessing and phase-amplitude coupling analysis of scalp EEG discriminates infantile spasms from controls during wakefulness.

Epilepsy Res. 2021-12

[7]
P300 ERP System Utilizing Wireless Visual Stimulus Presentation Devices.

Sensors (Basel). 2025-6-7

[8]
Spinal Cord Stimulation for Prolonged Disorders of Consciousness: A Study on Scalp Electroencephalography.

CNS Neurosci Ther. 2024-12

[9]
Longitudinal EEG-based assessment of neuroplasticity and adaptive responses to transcranial focused ultrasound stimulation.

J Neurosci Methods. 2025-10

[10]
Preprocessing choices for P3 analyses with mobile EEG: A systematic literature review and interactive exploration.

Psychophysiology. 2025-1

本文引用的文献

[1]
Automatic Calculation of Average Power in Electroencephalography Signals for Enhanced Detection of Brain Activity and Behavioral Patterns.

Biosensors (Basel). 2025-5-14

[2]
Juggler's ASR: Unpacking the principles of artifact subspace reconstruction for revision toward extreme MoBI.

J Neurosci Methods. 2025-8

[3]
Electrical brain activity during human walking with parametric variations in terrain unevenness and walking speed.

Imaging Neurosci (Camb). 2024

[4]
Shredding artifacts: extracting brain activity in EEG from extreme artifacts during skateboarding using ASR and ICA.

Front Neuroergon. 2024-6-26

[5]
Mobile neuroimaging: What we have learned about the neural control of human walking, with an emphasis on EEG-based research.

Neurosci Biobehav Rev. 2024-7

[6]
This is no "ICA bug": response to the article, "ICA's bug: how ghost ICs emerge from effective rank deficiency caused by EEG electrode interpolation and incorrect re-referencing".

Front Neuroimaging. 2023-12-21

[7]
iCanClean Removes Motion, Muscle, Eye, and Line-Noise Artifacts from Phantom EEG.

Sensors (Basel). 2023-10-1

[8]
iCanClean Improves Independent Component Analysis of Mobile Brain Imaging with EEG.

Sensors (Basel). 2023-1-13

[9]
Removal of movement-induced EEG artifacts: current state of the art and guidelines.

J Neural Eng. 2022-2-28

[10]
Comparing the effect of a simulated defender and dual-task on lower limb coordination and variability during a side-cut in basketball players with and without anterior cruciate ligament injury.

J Biomech. 2022-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索