Suppr超能文献

地面跑步过程中无线移动脑电图运动伪迹去除方法的比较

A Comparison of Approaches for Motion Artifact Removal from Wireless Mobile EEG During Overground Running.

作者信息

Ledwidge Patrick S, McPherson Carly N, Faulkenberg Lily, Morgan Alexander, Baylis Gordon C

机构信息

Department of Psychological Sciences, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA.

Department of Allied Health, Sport & Wellness, Baldwin Wallace University, 275 Eastland Rd., Berea, OH 44017, USA.

出版信息

Sensors (Basel). 2025 Aug 5;25(15):4810. doi: 10.3390/s25154810.

Abstract

Electroencephalography (EEG) is the only brain imaging method light enough and with the temporal precision to assess electrocortical dynamics during human locomotion. However, head motion during whole-body movements produces artifacts that contaminate the EEG and reduces ICA decomposition quality. We compared commonly used motion artifact removal approaches for reducing the motion artifact from the EEG during running and identifying stimulus-locked ERP components during an adapted flanker task. EEG was recorded from young adults during dynamic jogging and static standing versions of the Flanker task. Motion artifact removal approaches were evaluated based on their ICA's component dipolarity, power changes at the gait frequency and harmonics, and ability to capture the expected P300 ERP congruency effect. Preprocessing the EEG using either iCanClean with pseudo-reference noise signals or artifact subspace reconstruction (ASR) led to the recovery of more dipolar brain independent components. In our analyses, iCanClean was somewhat more effective than ASR. Power was significantly reduced at the gait frequency after preprocessing with ASR and iCanClean. Finally, preprocessing using ASR and iCanClean also produced ERP components similar in latency to those identified in the standing flanker task. The expected greater P300 amplitude to incongruent flankers was identified when preprocessing using iCanClean. ASR and iCanClean may provide effective preprocessing methods for reducing motion artifacts in human locomotion studies during running.

摘要

脑电图(EEG)是唯一一种足够轻便且具有时间精度,能够在人类运动过程中评估皮层电动力学的脑成像方法。然而,全身运动过程中的头部运动会产生伪迹,这些伪迹会干扰脑电图并降低独立成分分析(ICA)分解的质量。我们比较了常用的运动伪迹去除方法,以减少跑步过程中脑电图的运动伪迹,并在适应性侧翼任务中识别与刺激锁定的事件相关电位(ERP)成分。在侧翼任务的动态慢跑和静态站立版本中,记录了年轻成年人的脑电图。基于ICA的成分偶极性、步态频率及其谐波处的功率变化,以及捕捉预期的P300 ERP一致性效应的能力,对运动伪迹去除方法进行了评估。使用带有伪参考噪声信号的iCanClean或伪迹子空间重建(ASR)对脑电图进行预处理,可恢复更多偶极的脑独立成分。在我们的分析中,iCanClean比ASR稍有效。使用ASR和iCanClean预处理后,步态频率处的功率显著降低。最后,使用ASR和iCanClean进行预处理也产生了潜伏期与站立侧翼任务中识别出的ERP成分相似的ERP成分。使用iCanClean进行预处理时,发现了预期的对不一致侧翼刺激更大的P300波幅。ASR和iCanClean可能为减少跑步过程中人类运动研究中的运动伪迹提供有效的预处理方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a3/12349273/75bc3fffc595/sensors-25-04810-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验