Suppr超能文献

少而不同:使用扩展孤立森林检测有先验知识的考生。

Few and Different: Detecting Examinees With Preknowledge Using Extended Isolation Forests.

作者信息

Smith Nate R, Keller Lisa A, Feinberg Richard A, Liu Chunyan

机构信息

University of Massachusetts Amherst, Amherst, MA, USA.

National Board of Medical Examiners, Philadelphia, PA, USA.

出版信息

Appl Psychol Meas. 2025 Feb 20:01466216251320403. doi: 10.1177/01466216251320403.

Abstract

Item preknowledge refers to the case where examinees have advanced knowledge of test material prior to taking the examination. When examinees have item preknowledge, the scores that result from those item responses are not true reflections of the examinee's proficiency. Further, this contamination in the data also has an impact on the item parameter estimates and therefore has an impact on scores for all examinees, regardless of whether they had prior knowledge. To ensure the validity of test scores, it is essential to identify both issues: compromised items (CIs) and examinees with preknowledge (EWPs). In some cases, the CIs are known, and the task is reduced to determining the EWPs. However, due to the potential threat to validity, it is critical for high-stakes testing programs to have a process for routinely monitoring for evidence of EWPs, often when CIs are unknown. Further, even knowing that specific items may have been compromised does not guarantee that any examinees had prior access to those items, or that those examinees that did have prior access know how to effectively use the preknowledge. Therefore, this paper attempts to use response behavior to identify item preknowledge without knowledge of which items may or may not have been compromised. While most research in this area has relied on traditional psychometric models, we investigate the utility of an unsupervised machine learning algorithm, extended isolation forest (EIF), to detect EWPs. Similar to previous research, the response behavior being analyzed is response time (RT) and response accuracy (RA).

摘要

题目预知识是指考生在参加考试之前就已经提前知晓考试材料的情况。当考生具备题目预知识时,那些题目作答所产生的分数并不能真实反映考生的水平。此外,数据中的这种干扰因素也会对题目参数估计产生影响,进而对所有考生的分数产生影响,无论他们是否有先验知识。为确保考试分数的有效性,识别两个问题至关重要:受损题目(CIs)和有预知识的考生(EWPs)。在某些情况下,受损题目是已知的,任务就简化为确定有预知识的考生。然而,由于对有效性存在潜在威胁,对于高风险测试项目而言,拥有一个常规监测有预知识考生证据的流程至关重要,通常是在受损题目未知的情况下。此外,即使知道特定题目可能已被泄露,也不能保证有任何考生事先接触过这些题目,或者那些确实事先接触过的考生知道如何有效利用这些预知识。因此,本文试图在不知道哪些题目可能受损或未受损的情况下,利用作答行为来识别题目预知识。虽然该领域的大多数研究都依赖于传统心理测量模型,但我们研究了一种无监督机器学习算法——扩展孤立森林(EIF)检测有预知识考生的效用。与先前研究类似,所分析的作答行为是作答时间(RT)和作答准确性(RA)。

相似文献

2
Comparing the Performance of Eight Item Preknowledge Detection Statistics.比较八项预知识检测统计量的性能。
Appl Psychol Meas. 2016 Mar;40(2):83-97. doi: 10.1177/0146621615603327. Epub 2015 Sep 9.
4
Detection of Item Preknowledge Using Response Times.利用反应时间检测项目预知识
Appl Psychol Meas. 2020 Jul;44(5):376-392. doi: 10.1177/0146621620909893. Epub 2020 Apr 13.
7
Detecting Item Preknowledge Using a Predictive Checking Method.使用预测性检查方法检测项目预知识。
Appl Psychol Meas. 2017 Jun;41(4):243-263. doi: 10.1177/0146621616687285. Epub 2017 Jan 22.
9
Two New Models for Item Preknowledge.项目预知识的两种新模型。
Appl Psychol Meas. 2022 Sep;46(6):447-461. doi: 10.1177/01466216221108130. Epub 2022 Jun 22.
10
Detecting Examinees With Item Preknowledge on Real Data.在真实数据上检测具有题目先验知识的考生。
Appl Psychol Meas. 2022 Jun;46(4):273-287. doi: 10.1177/01466216221084202. Epub 2022 Apr 21.

本文引用的文献

1
Two New Models for Item Preknowledge.项目预知识的两种新模型。
Appl Psychol Meas. 2022 Sep;46(6):447-461. doi: 10.1177/01466216221108130. Epub 2022 Jun 22.
2
Detection of Item Preknowledge Using Response Times.利用反应时间检测项目预知识
Appl Psychol Meas. 2020 Jul;44(5):376-392. doi: 10.1177/0146621620909893. Epub 2020 Apr 13.
4
Detecting Item Preknowledge Using a Predictive Checking Method.使用预测性检查方法检测项目预知识。
Appl Psychol Meas. 2017 Jun;41(4):243-263. doi: 10.1177/0146621616687285. Epub 2017 Jan 22.
5
Comparing the Performance of Eight Item Preknowledge Detection Statistics.比较八项预知识检测统计量的性能。
Appl Psychol Meas. 2016 Mar;40(2):83-97. doi: 10.1177/0146621615603327. Epub 2015 Sep 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验