Beddoe Maximilian, Walden Sarah L, Miljevic Slobodan, Pidgayko Dmitry, Zou Chengjun, Minovich Alexander E, Barreda Angela, Pertsch Thomas, Staude Isabelle
Institute of Solid State Physics, Friedrich Schiller University Jena, 07743 Jena, Germany.
Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07745 Jena, Germany.
ACS Photonics. 2025 Jan 21;12(2):963-970. doi: 10.1021/acsphotonics.4c02029. eCollection 2025 Feb 19.
Embedding metasurfaces in liquid crystal (LC) cells is a promising technique for realizing tunable optical functionalities. Here, we demonstrate spatially controlled all-optical switching of the optical response of a homogeneous silicon nanocylinder metasurface featuring various Mie-type resonances in the spectral range between 670 and 720 nm integrated in a nematic LC cell. The initial alignment of the LC molecules is controlled by photoalignment layers, where the alignment direction is defined by homogeneous exposure with linearly polarized light at a 450 nm wavelength. Exposure of the photoalignment layer with the same light, whose polarization is rotated by 90°, induces a local change in the direction of the LC alignment and modulates the optical response of the metasurface. The resulting spatially dependent optical properties of the metasurface system are characterized by hyperspectral imaging. The described technique allows the nonvolatile creation of complex spatio-spectral response functions with a spatial resolution of 20 μm. Moreover, we demonstrate that the response of the LC-integrated metasurface can be switched multiple times by subsequent exposures with alternating orthogonal polarizations. Finally, we show that the images can be temporarily erased by heating the sample above the critical LC transition temperature, where the LC transitions to its isotropic phase. The demonstrated approach represents the controlling-light-by-light concept, an alternative to electro-optical or electromechanical control methods, which require complicated electronic architectures for spatially resolved modulation. Our results hold significant potential for applications such as next-generation displays or spatial light modulators that require spatial control of a tunable, tailored optical response.
将超表面嵌入液晶(LC)单元是实现可调谐光学功能的一项很有前景的技术。在此,我们展示了一种空间可控的全光开关,该开关用于控制集成在向列型LC单元中的均匀硅纳米圆柱超表面的光学响应,该超表面在670至720 nm光谱范围内具有各种米氏型共振。LC分子的初始取向由光取向层控制,其中取向方向由450 nm波长的线偏振光均匀曝光来定义。用相同的光照射光取向层,其偏振旋转90°,会引起LC取向方向的局部变化,并调制超表面的光学响应。超表面系统产生的空间相关光学特性通过高光谱成像来表征。所描述的技术允许以20μm的空间分辨率非易失性地创建复杂的空间光谱响应函数。此外,我们证明了通过交替正交偏振的后续曝光,可以多次切换集成LC的超表面的响应。最后,我们表明通过将样品加热到高于临界LC转变温度(此时LC转变为各向同性相),可以暂时擦除图像。所展示的方法代表了光控光概念,这是电光或机电控制方法的一种替代方案,后者需要复杂的电子架构来进行空间分辨调制。我们的结果在下一代显示器或需要对可调谐、定制光学响应进行空间控制的空间光调制器等应用中具有巨大潜力。