Suppr超能文献

DNA嵌入剂结合能的准确预测:短分子动力学模拟还是长分子动力学模拟集合?

Accurate prediction of DNA-Intercalator binding energies: Ensemble of short or long molecular dynamics simulations?

作者信息

Pushkaran Anju Choorakottayil, Arabi Alya A

机构信息

Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box: 15551, United Arab Emirates.

Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box: 15551, United Arab Emirates.

出版信息

Int J Biol Macromol. 2025 May;306(Pt 2):141408. doi: 10.1016/j.ijbiomac.2025.141408. Epub 2025 Feb 22.

Abstract

Despite the wide use of molecular dynamics (MD) simulations for binding energy predictions in biomolecular systems, results from single MD simulations are non-reproducible and often deviate from experimental values, even when longer simulations are used. This study addresses these limitations using ensemble MD simulations for the formation of DNA-intercalator complexes. Twenty-five replicas of short (10 ns) and long (100 ns) MD simulations were performed on different intercalators binding into DNA. The MM/PBSA and MM/GBSA binding energies of the Doxorubicin intercalating into DNA, including entropy and deformation energy corrections, are -7.3 ± 2.0 kcal/mol and -8.9 ± 1.6 kcal/mol, using 25 replicas of 100 ns. These values were closely reproduced even with shorter simulations of 10 ns, where the energies, averaged over 25 replicas, are -7.6 ± 2.4 kcal/mol (MM/PBSA) and -8.3 ± 2.9 kcal/mol (MM/GBSA). In both cases, the energies align well with the experimental range of -7.7 ± 0.3 to -9.9 ± 0.1 kcal/mol. This shows that reproducibility and accuracy of the binding energies depend more on the number of replicas than on the simulation length. The study was repeated for the DNA-Proflavine system, where the corrected MM/PBSA and MM/GBSA binding energies, averaged over 25 replicas of 10 ns each, are -5.6 ± 1.4 and -5.3 ± 2.3 kcal/mol, respectively. These are congruent with the experimental range of -5.9 to -7.1 kcal/mol. Bootstrap analyses revealed that 6 replicas of 100 ns or 8 replicas of 10 ns provide a good balance between computational efficiency and accuracy within 1.0 kcal/mol from experimental values.

摘要

尽管分子动力学(MD)模拟在生物分子系统的结合能预测中得到了广泛应用,但即使使用更长时间的模拟,单个MD模拟的结果也不可重复,且常常偏离实验值。本研究通过系综MD模拟来研究DNA嵌入剂复合物的形成,以解决这些局限性。针对不同嵌入剂与DNA的结合,进行了25个短(10纳秒)和长(100纳秒)MD模拟复本。使用25个100纳秒的复本,阿霉素嵌入DNA的MM/PBSA和MM/GBSA结合能,包括熵和变形能校正,分别为-7.3±2.0千卡/摩尔和-8.9±1.6千卡/摩尔。即使使用10纳秒的较短模拟,这些值也能得到很好的重现,在25个复本上平均的能量为-7.6±2.4千卡/摩尔(MM/PBSA)和-8.3±2.9千卡/摩尔(MM/GBSA)。在这两种情况下,能量与-7.7±0.3至-9.9±0.1千卡/摩尔的实验范围吻合良好。这表明结合能的可重复性和准确性更多地取决于复本数量而非模拟长度。对DNA-原黄素系统重复了该研究,在每个10纳秒的25个复本上平均的校正MM/PBSA和MM/GBSA结合能分别为-5.6±1.4和-5.3±2.3千卡/摩尔。这些与-5.9至-7.1千卡/摩尔的实验范围一致。自助法分析表明,100纳秒的6个复本或10纳秒的8个复本在计算效率和与实验值相差1.0千卡/摩尔以内的准确性之间提供了良好的平衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验