School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylors 47500 Subang Jaya, Selangor, Malaysia.
Digital Health and Medical Advancement Impact Lab, Taylor's University, No. 1 Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia.
J Mol Model. 2024 Oct 31;30(11):390. doi: 10.1007/s00894-024-06189-4.
The substantial increase in the number of active and inactive-state CB receptor experimental structures has provided opportunities for CB drug discovery using various structure-based drug design methods, including the popular end-point methods for predicting binding free energies-Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA). In this study, we have therefore evaluated the performance of MM/PBSA and MM/GBSA in calculating binding free energies for CB receptor. Additionally, with both MM/PBSA and MM/GBSA being known for their highly individualized performance, we have evaluated the effects of various simulation parameters including the use of energy minimized structures, choice of solute dielectric constant, inclusion of entropy, and the effects of the five GB models. Generally, MM/GBSA provided higher correlations than MM/PBSA (r = 0.433 - 0.652 vs. r = 0.100 - 0.486) regardless of the simulation parameters, while also offering faster calculations. Improved correlations were observed with the use of molecular dynamics ensembles compared with energy minimized structures and larger solute dielectric constants. Incorporation of entropic terms led to unfavorable results for both MM/PBSA and MM/GBSA for a majority of the dataset, while the evaluation of the various GB models exerted a varying effect on both the datasets. The findings obtained in this study demonstrate the utility of MM/PBSA and MM/GBSA in predicting binding free energies for the CB receptor, hence providing a useful benchmark for their applicability in the endocannabinoid system as well as other G protein-coupled receptors.
The study utilized the docked dataset (Induced Fit Docking with Glide XP scoring function) from Loo et al., consisting of 46 ligands-23 agonists and 23 antagonists. The equilibrated structures from Loo et al. were subjected to 30 ns production simulations using GROMACS 2018 at 300 K and 1 atm with the velocity rescaling thermostat and the Parinello-Rahman barostat. AMBER ff99SB*-ILDN was used for the proteins, General Amber Force Field (GAFF) was used for the ligands, and Slipids parameters were used for lipids. MM/PBSA and MM/GBSA binding free energies were then calculated using gmx_MMPBSA. The solute dielectric constant was varied between 1, 2, and 4 to study the effect of different solute dielectric constants on the performance of MM/PB(GB)SA. The effect of entropy on MM/PB(GB)SA binding free energies was evaluated using the interaction entropy module implemented in gmx_MMPBSA. Five GB models, GB, GB, GB, GB, and GB, were evaluated to study the effect of the choice of GB models in the performance of MM/GBSA. Pearson correlation coefficients were used to measure the correlation between experimental and predicted binding free energies.
活性和非活性状态 CB 受体实验结构数量的大量增加,为使用各种基于结构的药物设计方法(包括用于预测结合自由能的流行终点方法——分子力学/泊松-玻尔兹曼表面面积(MM/PBSA)和分子力学/广义 Born 表面面积(MM/GBSA))进行 CB 药物发现提供了机会。在这项研究中,我们因此评估了 MM/PBSA 和 MM/GBSA 在计算 CB 受体结合自由能方面的性能。此外,由于 MM/PBSA 和 MM/GBSA 都具有高度个性化的性能,我们评估了各种模拟参数的影响,包括使用能量最小化结构、选择溶剂介电常数、包含熵以及五种 GB 模型的影响。一般来说,无论使用何种模拟参数,MM/GBSA 提供的相关性都高于 MM/PBSA(r=0.433-0.652 与 r=0.100-0.486),同时计算速度也更快。与使用能量最小化结构相比,使用分子动力学集合可以获得更好的相关性,并且较大的溶剂介电常数也可以获得更好的相关性。对于大多数数据集,包含熵项会导致 MM/PBSA 和 MM/GBSA 的结果不利,而对各种 GB 模型的评估对两个数据集都有不同的影响。本研究中的发现表明,MM/PBSA 和 MM/GBSA 可用于预测 CB 受体的结合自由能,因此为它们在内源性大麻素系统以及其他 G 蛋白偶联受体中的适用性提供了有用的基准。
该研究利用了 Loo 等人的对接数据集(使用 Glide XP 评分函数的诱导拟合对接),其中包含 46 种配体-23 种激动剂和 23 种拮抗剂。使用 GROMACS 2018 在 300 K 和 1 atm 下进行 30 ns 生产模拟,使用速度 rescaling 恒温器和 Parinello-Rahman 压力平衡器。蛋白质采用 AMBER ff99SB*-ILDN,配体采用通用 Amber 力场(GAFF),脂质采用 Slipids 参数。然后使用 gmx_MMPBSA 计算 MM/PBSA 和 MM/GBSA 结合自由能。研究了不同溶剂介电常数对 MM/PB(GB)SA 性能的影响,将溶剂介电常数在 1、2 和 4 之间变化。使用 gmx_MMPBSA 中实现的相互作用熵模块评估了熵对 MM/PB(GB)SA 结合自由能的影响。评估了五个 GB 模型,即 GB、GB、GB、GB 和 GB,以研究在 MM/GBSA 性能中选择 GB 模型的影响。使用 Pearson 相关系数来衡量实验和预测结合自由能之间的相关性。