Suppr超能文献

利用拉伸应变工程激活铋催化剂中的惰性无缺陷位点用于高活性CO电还原。

Activating inert non-defect sites in Bi catalysts using tensile strain engineering for highly active CO electroreduction.

作者信息

Chen Xingbao, Lu Ruihu, Li Chengbo, Luo Wen, Yu Ruohan, Zhu Jiexin, Lv Lei, Dai Yuhang, Gong Shanhe, Zhou Yazhou, Xiong Weiwei, Wu Jiahao, Cai Hongwei, Wu Xinfei, Deng Zhaohui, Xing Boyu, Su Lin, Wang Feiyue, Chao Feiyang, Chen Wei, Xia Chuan, Wang Ziyun, Mai Liqiang

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, PR China.

School of Chemical Sciences, University of Auckland, Auckland, New Zealand.

出版信息

Nat Commun. 2025 Feb 24;16(1):1927. doi: 10.1038/s41467-025-56975-8.

Abstract

Bi-defect sites are highly effective for CO reduction (CORR) to formic acid, yet most catalytic surfaces predominantly feature inert, non-defective Bi sites. To overcome this limitation, herein, tensile strain is introduced on wholescale non-defective Bi sites. Under rapid thermal shock, the Bi-based metal-organic framework (Bi-MOF-TS) shows weakened Bi-O bonds and produced tiny Bi clusters. During electrochemical reduction, these clusters create numerous continuous vacancies, inducing weak tensile strain over a large range of surrounding non-defective Bi sites. This strain enhances *OHCO intermediates adsorption and substantially lowers the reaction barrier. As a result, Bi-MOF-TS achieves a faradaic efficiency above 90% across 800 mV potential range, with an impressive formate partial current density of -995 ± 93 mA cm. Notably, Bi-MOF-TS exhibits a high HCOOH faradaic efficiency of 96 ± 0.64% at 400 mA cm in acidic electrolyte and a high single-pass carbon conversion efficiency (SPCE) of 62.0%. Additionally, a Zn-CO battery with Bi-MOF-TS as the cathode demonstrates a peak power density of 21.4 mW cm and maintains stability over 300 cycles.

摘要

双缺陷位点对将一氧化碳还原(CORR)为甲酸非常有效,但大多数催化表面主要具有惰性、无缺陷的铋位点。为了克服这一限制,本文在整体无缺陷的铋位点上引入了拉伸应变。在快速热冲击下,铋基金属有机框架(Bi-MOF-TS)显示出铋-氧键减弱,并产生了微小的铋簇。在电化学还原过程中,这些簇产生了大量连续的空位,在周围大范围的无缺陷铋位点上诱导出微弱的拉伸应变。这种应变增强了*OHCO中间体的吸附,并大幅降低了反应势垒。结果,Bi-MOF-TS在800 mV的电位范围内实现了超过90%的法拉第效率,甲酸根的分电流密度达到-99,5±93 mA cm,令人印象深刻。值得注意的是,Bi-MOF-TS在酸性电解质中,在400 mA cm时表现出96±0.64%的高甲酸法拉第效率和62.0%的高单通道碳转化效率(SPCE)。此外,以Bi-MOF-TS作为阴极的锌-一氧化碳电池的峰值功率密度为21.4 mW cm,并在300次循环中保持稳定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30cf/11850590/9840a14af9c3/41467_2025_56975_Fig1_HTML.jpg

相似文献

2
Electrochemical Conversion of CO into Formate Boosted by In Situ Reconstruction of Bi-MOF to BiOCO Ultrathin Nanosheets.
ACS Appl Mater Interfaces. 2024 Mar 20;16(11):13882-13892. doi: 10.1021/acsami.4c01120. Epub 2024 Mar 8.
4
Synergistic Effects of Doping and Strain in Bismuth Catalysts for CO Electroreduction.
Small. 2024 Aug;20(34):e2401017. doi: 10.1002/smll.202401017. Epub 2024 Apr 9.
5
Cobalt-Doped Bismuth Nanosheet Catalyst for Enhanced Electrochemical CO Reduction to Electrolyte-Free Formic Acid.
Angew Chem Int Ed Engl. 2024 Sep 2;63(36):e202403671. doi: 10.1002/anie.202403671. Epub 2024 Aug 2.
6
Bi@Sn Core-Shell Structure with Compressive Strain Boosts the Electroreduction of CO into Formic Acid.
Adv Sci (Weinh). 2020 Oct 1;7(22):1902989. doi: 10.1002/advs.201902989. eCollection 2020 Nov.
7
Cu promoted electron-rich Bi sites in metal-organic layers for industrial-current-level acidic electroreduction CO to liquid fuel.
J Colloid Interface Sci. 2025 May 15;686:1168-1174. doi: 10.1016/j.jcis.2025.02.017. Epub 2025 Feb 4.
9
Unveiling pH-Dependent Adsorption Strength of *CO Intermediate over High-Density Sn Single Atom Catalyst for Acidic CO-to-HCOOH Electroreduction.
Angew Chem Int Ed Engl. 2024 Apr 2;63(14):e202318874. doi: 10.1002/anie.202318874. Epub 2024 Mar 1.
10
Dual-Anion Regulation for Reversible and Energetic Aqueous Zn-CO Batteries.
Small Methods. 2024 Jun;8(6):e2300867. doi: 10.1002/smtd.202300867. Epub 2023 Oct 30.

本文引用的文献

1
Observation on Microenvironment Changes of Dynamic Catalysts in Acidic CO Reduction.
J Am Chem Soc. 2024 Feb 28;146(8):5333-5342. doi: 10.1021/jacs.3c12321. Epub 2024 Feb 19.
2
Enhancing Local CO Adsorption by L-histidine Incorporation for Selective Formate Production Over the Wide Potential Window.
Angew Chem Int Ed Engl. 2023 Dec 4;62(49):e202313522. doi: 10.1002/anie.202313522. Epub 2023 Oct 31.
3
Surface passivation for highly active, selective, stable, and scalable CO electroreduction.
Nat Commun. 2023 Aug 3;14(1):4670. doi: 10.1038/s41467-023-40342-6.
4
Adjacent Copper Single Atoms Promote C-C Coupling in Electrochemical CO Reduction for the Efficient Conversion of Ethanol.
J Am Chem Soc. 2023 Aug 9;145(31):17253-17264. doi: 10.1021/jacs.3c04612. Epub 2023 Jul 27.
5
Acidic CO-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide.
Nat Commun. 2023 May 18;14(1):2843. doi: 10.1038/s41467-023-38497-3.
6
Modulation of *CHO Adsorption to Facilitate Electrocatalytic Reduction of CO to CH over Cu-Based Catalysts.
J Am Chem Soc. 2023 Mar 29;145(12):6622-6627. doi: 10.1021/jacs.2c12006. Epub 2023 Mar 20.
7
Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO electroreduction to formate.
Sci Bull (Beijing). 2021 Aug 15;66(15):1533-1541. doi: 10.1016/j.scib.2021.03.020. Epub 2021 Mar 23.
8
Liquid Fluxional Ga Single Atom Catalysts for Efficient Electrochemical CO Reduction.
Angew Chem Int Ed Engl. 2023 Jan 16;62(3):e202215136. doi: 10.1002/anie.202215136. Epub 2022 Dec 13.
9
Ultrahigh Stable Methanol Oxidation Enabled by a High Hydroxyl Concentration on Pt Clusters/MXene Interfaces.
J Am Chem Soc. 2022 Aug 31;144(34):15529-15538. doi: 10.1021/jacs.2c03982. Epub 2022 Aug 9.
10
Engineering Water Molecules Activation Center on Multisite Electrocatalysts for Enhanced CO Methanation.
J Am Chem Soc. 2022 Jul 20;144(28):12807-12815. doi: 10.1021/jacs.2c03875. Epub 2022 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验