Byun Ji-Young, Nguyen Thi Thuy, Cho Byung-Kwan, Park Soo-Hoon, Kim Sun-Chang
Applied Science Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
Intelligent Synthetic Biology Center, 291 Daehak-ro, Daejeon, 305-701, Republic of Korea.
Microb Cell Fact. 2025 Feb 24;24(1):47. doi: 10.1186/s12934-025-02667-3.
Metabolic engineering to increase the supply of precursors, such as 2,3-oxidosqualene (OSQ), and manipulate heterologous biosynthetic pathways through the strategic overexpression of multiple genes is promising for increasing the microbial production of triterpenoid saponins. However, the multiple use of constitutive promoters, typically derived from glycolytic or ribosomal protein promoters, can cause transcription factor competition, reducing the expression of each gene. To avoid this issue, we overexpressed transcriptional factor repressor activator protein 1 (Rap1), known to upregulate glycolytic gene expression and be involved in various metabolic pathways, including pyruvate dehydrogenase (PDH) bypass, the mevalonate (MVA) pathway, and sterol synthesis.
Transcriptome analysis of a wild-type yeast strain revealed that Rap1 overexpression significantly upregulated several central carbon metabolism (CCM)-related genes for OSQ production, including glycolytic genes, particularly after the diauxic shift phase. To validate the effect on triterpenoid saponin production, we engineered a Saccharomyces cerevisiae strain capable of producing ginsenoside compound K (CK). Notably, compared with the control strain, the CK-producing strain with Rap1 overexpression showed upregulation of heterologous genes controlled by TDH3 promoter, and a continuous supply of precursors to the CK synthesis pathway, resulting in a 4.5-fold increase in CK production.
These results highlight Rap1 overexpression as a robust strategy to increase triterpenoid production in yeast cell factories. Additionally, this approach provides a versatile framework for enhancing both precursor supply and heterologous gene expression.
通过代谢工程增加前体物质(如2,3-氧化角鲨烯,OSQ)的供应,并通过多个基因的策略性过表达来操纵异源生物合成途径,有望提高微生物三萜皂苷的产量。然而,组成型启动子(通常来源于糖酵解或核糖体蛋白启动子)的多次使用会导致转录因子竞争,降低每个基因的表达。为避免此问题,我们过表达了转录因子阻遏激活蛋白1(Rap1),已知该蛋白可上调糖酵解基因表达,并参与包括丙酮酸脱氢酶(PDH)旁路、甲羟戊酸(MVA)途径和甾醇合成在内的各种代谢途径。
对野生型酵母菌株的转录组分析表明,Rap1过表达显著上调了几个与OSQ产生相关的中心碳代谢(CCM)相关基因,包括糖酵解基因,特别是在双相转变期之后。为验证对三萜皂苷生产的影响,我们构建了一种能够产生人参皂苷Compound K(CK)的酿酒酵母菌株。值得注意的是,与对照菌株相比,过表达Rap1的CK生产菌株显示出由TDH3启动子控制的异源基因上调,以及向CK合成途径持续供应前体物质,导致CK产量增加了4.5倍。
这些结果突出了Rap1过表达作为一种在酵母细胞工厂中提高三萜产量的有效策略。此外,这种方法为增强前体供应和异源基因表达提供了一个通用框架。