Suppr超能文献

使用传热传感器进行原位生物膜监测:流速对管道和平板系统的影响。

In Situ Biofilm Monitoring Using a Heat Transfer Sensor: The Impact of Flow Velocity in a Pipe and Planar System.

作者信息

Netsch Andreas, Sen Shaswata, Horn Harald, Wagner Michael

机构信息

DVGW Research Center at the Engler-Bunte-Institut, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.

Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.

出版信息

Biosensors (Basel). 2025 Feb 6;15(2):93. doi: 10.3390/bios15020093.

Abstract

Industrially applied bioelectrochemical systems require long-term stable operation, and hence the control of biofilm accumulation on the electrodes. An optimized application of biofilm control mechanisms presupposes on-line, in-situ monitoring of the accumulated biofilm. Heat transfer sensors have successfully been integrated into industrial systems for on-line, non-invasive monitoring of biofilms. In this study, a mathematical model for the description of the sensitivity of a heat transfer biofilm sensor was developed, incorporating the hydrodynamic conditions of the fluid and the geometrical properties of the substratum. This model was experimentally validated at different flow velocities by integrating biofilm sensors into cylindrical pipes and planar mesofluidic flow cells with a carbonaceous substratum. Dimensionless sensor readings were correlated with the mean biovolume measured gravimetrically, and optical coherence tomography was used to determine the sensors' sensitivity. The biofilm sensors applied in the planar flow cells revealed an increase in sensitivity by a factor of 6 compared to standard stainless steel pipes, as well as improved sensitivity at higher flow velocities.

摘要

工业应用的生物电化学系统需要长期稳定运行,因此要控制电极上生物膜的积累。生物膜控制机制的优化应用以对积累的生物膜进行在线、原位监测为前提。传热传感器已成功集成到工业系统中,用于生物膜的在线、非侵入式监测。在本研究中,开发了一个用于描述传热生物膜传感器灵敏度的数学模型,该模型纳入了流体的流体动力学条件和基底的几何特性。通过将生物膜传感器集成到带有碳质基底的圆柱形管道和平面微流体流动池中,在不同流速下对该模型进行了实验验证。无量纲传感器读数与通过重量法测量的平均生物体积相关,并且使用光学相干断层扫描来确定传感器的灵敏度。与标准不锈钢管道相比,应用于平面流动池的生物膜传感器灵敏度提高了6倍,并且在较高流速下灵敏度也有所提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8424/11853227/2ebb278880e2/biosensors-15-00093-g001.jpg

相似文献

3
Flow cells as quasi-ideal systems for biofouling simulation of industrial piping systems.
Biofouling. 2013 Sep;29(8):953-66. doi: 10.1080/08927014.2013.821467. Epub 2013 Aug 1.
4
Predicting tubular heat exchanger efficiency reduction caused by marine biofilm adhesion using CFD simulations.
Biofouling. 2022 Aug;38(7):663-673. doi: 10.1080/08927014.2022.2110493. Epub 2022 Aug 11.
5
Detecting Excess Biofilm Thickness in Microbial Electrolysis Cells by Real-Time In-Situ Biofilm Monitoring.
Biotechnol Bioeng. 2025 Aug;122(8):2049-2062. doi: 10.1002/bit.29017. Epub 2025 May 2.
7
Dynamic Changes in Biofilm Structures under Dynamic Flow Conditions.
Appl Environ Microbiol. 2022 Nov 22;88(22):e0107222. doi: 10.1128/aem.01072-22. Epub 2022 Oct 27.
8
Impact of flow hydrodynamics and pipe material properties on biofilm development within drinking water systems.
Environ Technol. 2020 Dec;41(28):3732-3744. doi: 10.1080/09593330.2019.1619844. Epub 2019 May 29.
9
Morphogenesis of Biofilms in Porous Media and Control on Hydrodynamics.
Environ Sci Technol. 2023 Apr 11;57(14):5666-5677. doi: 10.1021/acs.est.2c08890. Epub 2023 Mar 28.
10
The effect of anode hydrodynamics on the sensitivity of microbial fuel cell based biosensors and the biological mechanism.
Bioelectrochemistry. 2020 Apr;132:107351. doi: 10.1016/j.bioelechem.2019.107351. Epub 2019 Nov 18.

引用本文的文献

1
Detecting Excess Biofilm Thickness in Microbial Electrolysis Cells by Real-Time In-Situ Biofilm Monitoring.
Biotechnol Bioeng. 2025 Aug;122(8):2049-2062. doi: 10.1002/bit.29017. Epub 2025 May 2.

本文引用的文献

1
The role of shear dynamics in biofilm formation.
NPJ Biofilms Microbiomes. 2022 Apr 29;8(1):33. doi: 10.1038/s41522-022-00300-4.
5
The role of flow in bacterial biofilm morphology and wetting properties.
Colloids Surf B Biointerfaces. 2020 Aug;192:111047. doi: 10.1016/j.colsurfb.2020.111047. Epub 2020 Apr 18.
8
Microbial nanowires and electroactive biofilms.
FEMS Microbiol Ecol. 2018 Jul 1;94(7). doi: 10.1093/femsec/fiy086.
9
Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.
Appl Environ Microbiol. 2017 Aug 17;83(17). doi: 10.1128/AEM.00903-17. Print 2017 Sep 1.
10
Optical coherence tomography in biofilm research: A comprehensive review.
Biotechnol Bioeng. 2017 Jul;114(7):1386-1402. doi: 10.1002/bit.26283. Epub 2017 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验