Netsch Andreas, Latussek Inka, Horn Harald, Wagner Michael
DVGW Research Center, Water Chemistry and Water Technology, Karlsruhe, Germany.
Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
Biotechnol Bioeng. 2025 Aug;122(8):2049-2062. doi: 10.1002/bit.29017. Epub 2025 May 2.
Long-term stable operation of bioelectrochemical systems (BES) presupposes the avoidance of mass transfer limitations of the electroactive biofilm. Excessive pH-gradients from bulk to electrode interface or substrate limitations of the electroactive biofilm are known to diminish the electrical performance of BES. In this study the impact of the morphology of a mixed-species electroactive biofilm cultivated on the electrical performance of a microbial electrolysis cell (MEC) was investigated to identify the optimal biofilm for real-life applications in wastewater treatment. Noninvasive monitoring by means of optical coherence tomography and an industrial biofilm sensor allowed for a real-time evaluation of the morphology of the biofilm. The maximum current density of approximately 3.5 A/m² was found for a mean biofilm thickness in the range of 100-150 µm, beyond which thicker biofilms caused mass transfer limitations. Along with local biofilm detachment a continuous decline in efficiency demonstrates the need for active biofilm control to adjust the biofilm thickness.
生物电化学系统(BES)的长期稳定运行以避免电活性生物膜的传质限制为前提。已知从本体到电极界面的过大pH梯度或电活性生物膜的底物限制会降低BES的电性能。在本研究中,研究了在微生物电解池(MEC)上培养的混合物种电活性生物膜的形态对其电性能的影响,以确定用于废水处理实际应用的最佳生物膜。通过光学相干断层扫描和工业生物膜传感器进行的非侵入性监测允许对生物膜的形态进行实时评估。发现平均生物膜厚度在100-150μm范围内时,最大电流密度约为3.5A/m²,超过该厚度,较厚的生物膜会导致传质限制。随着局部生物膜脱落,效率持续下降,这表明需要对生物膜进行主动控制以调节生物膜厚度。