Samarakoon S M U S, Herath H M K K M B, Yasakethu S L P, Fernando Dileepa, Madusanka Nuwan, Yi Myunggi, Lee Byeong-Il
Faculty of Engineering, Sri Lanka Technology Campus, Padukka 10500, Sri Lanka.
Information Systems Technology and Design, Singapore University of Technology and Design, Singapore 487372, Singapore.
Biomimetics (Basel). 2025 Feb 12;10(2):106. doi: 10.3390/biomimetics10020106.
Restoring strength, function, and mobility following an illness, accident, or surgery is the primary goal of upper arm rehabilitation. Exoskeletons offer adaptable support, enhancing patient engagement and accelerating recovery. This work proposes an adjustable, wearable robotic exoskeleton powered by electromyography (EMG) data for upper arm rehabilitation. Three activation levels-low, medium, and high-were applied to the EMG data to forecast the Pulse Width Modulation (PWM) based on the range of motion (ROM) angle. Conventional machine learning (ML) models, including K-Nearest Neighbor Regression (K-NNR), Support Vector Regression (SVR), and Random Forest Regression (RFR), were compared with neural network approaches, including Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) to determine the best ML model for the ROM angle prediction. The LSTM model emerged as the best predictor with a high accuracy of 0.96. The system achieved 0.89 accuracy in exoskeleton control and 0.85 accuracy in signal categorization. Additionally, the proposed exoskeleton demonstrated a 0.97 performance in ROM correction compared to conventional methods ( = 0.097). These findings highlight the potential of EMG-based, LSTM-enabled exoskeleton systems to deliver accurate and adaptive upper arm rehabilitation, particularly for senior citizens, by providing personalized and effective support.
在患病、遭遇事故或接受手术后恢复力量、功能和活动能力是上臂康复的主要目标。外骨骼提供适应性支持,增强患者参与度并加速康复。这项工作提出了一种由肌电图(EMG)数据驱动的可调节、可穿戴机器人外骨骼用于上臂康复。对EMG数据应用了低、中、高三个激活水平,以根据运动范围(ROM)角度预测脉宽调制(PWM)。将包括K近邻回归(K-NNR)、支持向量回归(SVR)和随机森林回归(RFR)在内的传统机器学习(ML)模型与包括门控循环单元(GRU)和长短期记忆(LSTM)在内的神经网络方法进行比较,以确定用于ROM角度预测的最佳ML模型。LSTM模型以0.96的高精度成为最佳预测器。该系统在外骨骼控制方面达到了0.89的准确率,在信号分类方面达到了0.85的准确率。此外,与传统方法相比,所提出的外骨骼在ROM校正方面表现出0.97的性能( = 0.097)。这些发现凸显了基于EMG、启用LSTM的外骨骼系统通过提供个性化和有效的支持,为上臂康复提供准确和适应性支持的潜力,特别是对老年人而言。