Laturski Amy E, Dulay Maria T, Perry Jillian L, DeSimone Joseph M
Department of Chemistry, Stanford University, Stanford, California 94305, United States.
Department of Radiology, Stanford University, Stanford, California 94305, United States.
Bioconjug Chem. 2025 Mar 19;36(3):367-376. doi: 10.1021/acs.bioconjchem.5c00028. Epub 2025 Feb 25.
Historically, RNA delivery via nanoparticles has primarily relied on encapsulation, as demonstrated by lipid nanoparticles in SARS-CoV-2 vaccines. Concerns about RNA degradation on nanoparticle surfaces initially limited the exploration of adsorption-based approaches. However, recent advancements have renewed interest in adsorption as a viable alternative. This Viewpoint explores the approaches of RNA incorporation in nanoparticles, comparing encapsulation, adsorption, and the combination of encapsulation and adsorption, and presents a framework to guide the selection of the most suitable strategy based on general characteristics.
从历史上看,通过纳米颗粒递送RNA主要依赖于封装,如SARS-CoV-2疫苗中的脂质纳米颗粒所示。对纳米颗粒表面RNA降解的担忧最初限制了对基于吸附方法的探索。然而,最近的进展重新激发了人们对吸附作为一种可行替代方法的兴趣。本观点探讨了RNA纳入纳米颗粒的方法,比较了封装、吸附以及封装与吸附的组合,并提出了一个基于一般特征来指导选择最合适策略的框架。