Paracini Nicolò, Correa Yubexi, Del Giudice Rita, Moulin Martine, Pichler Harald, Bengtsson Eva, Forsyth V Trevor, Skoda Maximilian W A, Clifton Luke A, Cárdenas Marité
Biofilms - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden.
Biofilms - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden.
J Colloid Interface Sci. 2025 Jun 15;688:150-160. doi: 10.1016/j.jcis.2025.02.131. Epub 2025 Feb 20.
Lipoproteins, key mediators of lipid transport, facilitate the bidirectional transfer of lipids such as fatty acids, triglycerides, and cholesterol between soluble particles and cell membranes. High-density lipoproteins (HDL) primarily engage in reverse cholesterol transport, while low-density lipoproteins (LDL) predominantly deposit lipids, affecting cardiovascular health with a well-known role in the formation of the atherosclerotic plaque. In addition, lipoproteins play an important role in neutralizing bacterial lipopolysaccharides (LPS), the major component of Gram-negative bacterial outer membranes, which act as potent TLR4 agonists and can trigger severe immune responses. Lipoproteins bind LPS in plasma, with HDL showing strong binding affinity and LDL contributing to LPS clearance under specific conditions. Here, we explore the interaction of LDL and human serum albumin (HSA), another serum lipid-binding protein, with model lipid bilayers containing either phospholipids or LPS. Using neutron reflectometry and attenuated total reflection infrared spectroscopy, we characterize lipid transfer processes influenced by calcium levels and lipid composition. Calcium plays a key role in receptor-mediated LDL binding, but less is known on its effect on LDL-mediated lipid transfer in the absence of LDL receptors. Our results show that elevated calcium levels enhance stable LDL adsorption onto mammalian phospholipid-cholesterol membranes, promoting lipid cargo deposition despite the absence of specific LDL-receptors. Conversely, LDL showed no stable binding to LPS reconstituted in asymmetric outer membrane models but was able to deposit phospholipids in the membrane. In contrast, HSA removed lipids from mammalian membranes and exhibited minimal interaction with LPS-containing models. The findings elucidate the distinct lipid exchange mechanisms of LDL and HSA and their roles in modulating lipid transfer at membrane interfaces. Receptor-free enhanced LDL lipid deposition in calcium-enriched environments may have implications for cardiovascular disease progression. Conversely, the minimal interaction of LDL with bacterial LPS suggests a limited ability to extract LPS from membrane environments. This study provides structural insights into the interplay between lipoproteins, calcium, and membrane composition, with relevance to atherosclerosis and systemic endotoxemia.
脂蛋白是脂质运输的关键介质,促进脂肪酸、甘油三酯和胆固醇等脂质在可溶性颗粒和细胞膜之间的双向转移。高密度脂蛋白(HDL)主要参与逆向胆固醇转运,而低密度脂蛋白(LDL)主要沉积脂质,在动脉粥样硬化斑块形成中具有众所周知的作用,影响心血管健康。此外,脂蛋白在中和细菌脂多糖(LPS)方面发挥重要作用,LPS是革兰氏阴性菌外膜的主要成分,作为有效的TLR4激动剂,可引发严重的免疫反应。脂蛋白在血浆中结合LPS,HDL表现出很强的结合亲和力,LDL在特定条件下有助于LPS清除。在这里,我们探讨了LDL和另一种血清脂质结合蛋白人血清白蛋白(HSA)与含有磷脂或LPS的模型脂质双层的相互作用。使用中子反射率和衰减全反射红外光谱,我们表征了受钙水平和脂质组成影响的脂质转移过程。钙在受体介导的LDL结合中起关键作用,但在没有LDL受体的情况下,其对LDL介导的脂质转移的影响知之甚少。我们的结果表明,钙水平升高会增强LDL在哺乳动物磷脂 - 胆固醇膜上的稳定吸附,尽管没有特定的LDL受体,但仍能促进脂质货物沉积。相反,LDL在不对称外膜模型中重构的LPS上没有稳定结合,但能够在膜中沉积磷脂。相比之下,HSA从哺乳动物膜中去除脂质,并且与含LPS的模型相互作用最小。这些发现阐明了LDL和HSA不同的脂质交换机制及其在调节膜界面脂质转移中的作用。在富含钙的环境中无受体增强的LDL脂质沉积可能对心血管疾病进展有影响。相反,LDL与细菌LPS的最小相互作用表明从膜环境中提取LPS的能力有限。这项研究提供了脂蛋白、钙和膜组成之间相互作用的结构见解,与动脉粥样硬化和全身性内毒素血症相关。