Suppr超能文献

一种用于质子治疗中分次间头颈部解剖结构变化的深度学习模型。

A deep learning model for inter-fraction head and neck anatomical changes in proton therapy.

作者信息

Burlacu Tiberiu, Hoogeman Mischa, Lathouwers Danny, Perkó Zoltán

机构信息

Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.

HollandPTC Consortium4, Delft, The Netherlands.

出版信息

Phys Med Biol. 2025 Mar 10;70(6). doi: 10.1088/1361-6560/adba39.

Abstract

To assess the performance of a probabilistic deep learning based algorithm for predicting inter-fraction anatomical changes in head and neck patients.A probabilistic daily anatomy model (DAM) for head and neck patients DAM (DAM) is built on the variational autoencoder architecture. The model approximates the generative joint conditional probability distribution of the repeat computed tomography (rCT) images and their corresponding masks on the planning CT images (pCT) and their masks. The model outputs deformation vector fields, which are used to produce possible rCTs and associated masks. The dataset is composed of 93 patients (i.e. 315 pCT-rCT pairs), 9 (i.e. 27 pairs) of which were set aside for final testing. The performance of the model is assessed based on the reconstruction accuracy and the generative performance for the set aside patients.The model achieves a DICE score of 0.83 and an image similarity score normalized cross-correlation of 0.60 on the test set. The generated parotid glands, spinal cord and constrictor muscle volume change distributions and center of mass shift distributions were also assessed. For all organs, the medians of the distributions are close to the true ones, and the distributions are broad enough to encompass the real observed changes. Moreover, the generated images display anatomical changes in line with the literature reported ones, such as the medial shifts of the parotids glands.DAMis capable of generating realistic anatomies observed during the course of the treatment and has applications in anatomical robust optimization, treatment planning based on plan library approaches and robustness evaluation against inter-fractional changes.

摘要

评估一种基于概率深度学习的算法预测头颈部患者分次间解剖结构变化的性能。一种用于头颈部患者的概率性每日解剖模型(DAM)基于变分自编码器架构构建。该模型近似于重复计算机断层扫描(rCT)图像及其在计划CT图像(pCT)上的相应掩码及其掩码的生成联合条件概率分布。该模型输出变形矢量场,用于生成可能的rCT和相关掩码。数据集由93名患者组成(即315对pCT - rCT),其中9对(即27对)留作最终测试。基于预留患者的重建准确性和生成性能评估模型的性能。该模型在测试集上的DICE评分为0.83,图像相似性评分归一化互相关为0.60。还评估了生成的腮腺、脊髓和咽缩肌体积变化分布以及质心移位分布。对于所有器官,分布的中位数接近真实值,并且分布足够宽泛以涵盖实际观察到的变化。此外,生成的图像显示出与文献报道一致的解剖结构变化,例如腮腺的内侧移位。DAM能够生成治疗过程中观察到的逼真解剖结构,并在解剖学稳健优化、基于计划库方法的治疗计划以及针对分次间变化的稳健性评估中具有应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验