Suppr超能文献

电子金属-载体相互作用调节铜的电子结构,用于将CO电还原为所需产物。

Electronic metal-support interaction modulates Cu electronic structures for CO electroreduction to desired products.

作者信息

Zhang Yong, Chen Feifei, Yang Xinyi, Guo Yiran, Zhang Xinghua, Dong Hong, Wang Weihua, Lu Feng, Lu Zunming, Liu Hui, Liu Hui, Xiao Yao, Cheng Yahui

机构信息

Department of Electronic Science and Engineering, Nankai University, Tianjin, China.

School of Material Science and Engineering, Hebei University of Technology, Tianjin, China.

出版信息

Nat Commun. 2025 Feb 25;16(1):1956. doi: 10.1038/s41467-025-57307-6.

Abstract

In this work, the Cu single-atom catalysts (SACs) supported by metal-oxides (AlO-Cu, CeO-Cu, and TiO-Cu) are used as theoretical models to explore the correlations between electronic structures and CORR performances. For these catalysts, the electronic metal-support interaction (EMSI) induced by charge transfer between Cu sites and supports subtly modulates the Cu electronic structure to form different highest occupied-orbital. The highest occupied 3d orbital of AlO-Cu enhances the adsorption strength of CO and weakens C-O bonds through 3d-π* electron back-donation. This reduces the energy barrier for C-C coupling, thereby promoting multicarbon formation on AlO-Cu. The highest occupied 3d orbital of TiO-Cu accelerates the HO activation, and lowers the reaction energy for forming CH. This over activated HO, in turn, intensifies competing hydrogen evolution reaction (HER), which hinders the high-selectivity production of CH on TiO-Cu. CeO-Cu with highest occupied 3d orbital promotes CO activation and its localized electronic state inhibits C-C coupling. The moderate water activity of CeO-Cu facilitates *CO deep hydrogenation without excessively activating HER. Hence, CeO-Cu exhibits the highest CH Faradaic efficiency of 70.3% at 400 mA cm.

摘要

在这项工作中,以金属氧化物负载的铜单原子催化剂(AlO-Cu、CeO-Cu和TiO-Cu)作为理论模型,以探索电子结构与CO2RR性能之间的相关性。对于这些催化剂,铜位点与载体之间的电荷转移所诱导的电子-金属-载体相互作用(EMSI)巧妙地调节了铜的电子结构,从而形成不同的最高占据轨道。AlO-Cu的最高占据3d轨道通过3d-π电子回授增强了CO的吸附强度并削弱了C-O键。这降低了C-C偶联的能垒,从而促进了AlO-Cu上多碳产物的形成。TiO-Cu的最高占据3d轨道加速了OH的活化,并降低了形成CH的反应能。这种过度活化的OH反过来又加剧了竞争性析氢反应(HER),从而阻碍了TiO-Cu上CH的高选择性生成。具有最高占据3d轨道的CeO-Cu促进了CO的活化,其局域电子态抑制了C-C偶联。CeO-Cu适度的水活性促进了CO的深度加氢,而不会过度活化HER。因此,CeO-Cu在400 mA cm-2时表现出最高的CH4法拉第效率,为70.3%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1afa/11861622/b2297ec61297/41467_2025_57307_Fig1_HTML.jpg

相似文献

2
Pressure-Dependent CO Electroreduction to Methane over Asymmetric Cu-N Single-Atom Sites.
J Am Chem Soc. 2024 Aug 14;146(32):22266-22275. doi: 10.1021/jacs.4c04031. Epub 2024 Jul 12.
4
Efficient electroreduction of CO to C products on CeO modified CuO.
Chem Sci. 2021 Mar 30;12(19):6638-6645. doi: 10.1039/d1sc01117k.
5
Ag Single Atoms Anchored on CeO with Interfacial Oxygen Vacancies for Efficient CO Electroreduction.
ACS Appl Mater Interfaces. 2023 Jun 28;15(25):30262-30271. doi: 10.1021/acsami.3c04556. Epub 2023 Jun 19.
6
Lewis Acid Site-Promoted Single-Atomic Cu Catalyzes Electrochemical CO Methanation.
Nano Lett. 2021 Sep 8;21(17):7325-7331. doi: 10.1021/acs.nanolett.1c02502. Epub 2021 Aug 17.
7
Single-Atom Catalysis toward Efficient CO Conversion to CO and Formate Products.
Acc Chem Res. 2019 Mar 19;52(3):656-664. doi: 10.1021/acs.accounts.8b00478. Epub 2018 Dec 4.

本文引用的文献

1
Selective Orbital Coupling: An Adsorption Mechanism in Single-Atom Catalysis.
J Am Chem Soc. 2024 May 8;146(18):12395-12400. doi: 10.1021/jacs.3c13119. Epub 2024 Apr 29.
2
Infrared Spectroscopic Evidence of Enhanced Electrochemical CO Reduction and C-C Coupling on Oxide-Derived Copper.
J Am Chem Soc. 2024 Jan 24;146(3):1935-1945. doi: 10.1021/jacs.3c08927. Epub 2024 Jan 8.
4
Catalytic Structure Design by AI Generating with Spectroscopic Descriptors.
J Am Chem Soc. 2023 Dec 13;145(49):26817-26823. doi: 10.1021/jacs.3c09299. Epub 2023 Nov 29.
5
Direct Electrochemical Synthesis of Acetamide from CO and N on a Single-Atom Alloy Catalyst.
ACS Appl Mater Interfaces. 2023 Nov 22;15(46):53436-53445. doi: 10.1021/acsami.3c11097. Epub 2023 Nov 7.
6
Atomic high-spin cobalt(II) center for highly selective electrochemical CO reduction to CHOH.
Nat Commun. 2023 Oct 17;14(1):6550. doi: 10.1038/s41467-023-42307-1.
7
Switching between C Products and CH in CO Electrolysis by Tuning the Composition and Structure of Rare-Earth/Copper Catalysts.
J Am Chem Soc. 2023 Oct 25;145(42):23037-23047. doi: 10.1021/jacs.3c05562. Epub 2023 Oct 11.
8
Oxophilicity-Controlled CO Electroreduction to C Alcohols over Lewis Acid Metal-Doped Cu Catalysts.
J Am Chem Soc. 2023 Oct 11;145(40):21945-21954. doi: 10.1021/jacs.3c06697. Epub 2023 Sep 26.
9
Advanced Catalyst Design and Reactor Configuration Upgrade in Electrochemical Carbon Dioxide Conversion.
Adv Mater. 2023 Dec;35(52):e2303052. doi: 10.1002/adma.202303052. Epub 2023 Nov 20.
10
Molecular Engineering of Cation Solvation Structure for Highly Selective Carbon Dioxide Electroreduction.
Angew Chem Int Ed Engl. 2023 Sep 11;62(37):e202303233. doi: 10.1002/anie.202303233. Epub 2023 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验