Zhang Yong, Chen Feifei, Yang Xinyi, Guo Yiran, Zhang Xinghua, Dong Hong, Wang Weihua, Lu Feng, Lu Zunming, Liu Hui, Liu Hui, Xiao Yao, Cheng Yahui
Department of Electronic Science and Engineering, Nankai University, Tianjin, China.
School of Material Science and Engineering, Hebei University of Technology, Tianjin, China.
Nat Commun. 2025 Feb 25;16(1):1956. doi: 10.1038/s41467-025-57307-6.
In this work, the Cu single-atom catalysts (SACs) supported by metal-oxides (AlO-Cu, CeO-Cu, and TiO-Cu) are used as theoretical models to explore the correlations between electronic structures and CORR performances. For these catalysts, the electronic metal-support interaction (EMSI) induced by charge transfer between Cu sites and supports subtly modulates the Cu electronic structure to form different highest occupied-orbital. The highest occupied 3d orbital of AlO-Cu enhances the adsorption strength of CO and weakens C-O bonds through 3d-π* electron back-donation. This reduces the energy barrier for C-C coupling, thereby promoting multicarbon formation on AlO-Cu. The highest occupied 3d orbital of TiO-Cu accelerates the HO activation, and lowers the reaction energy for forming CH. This over activated HO, in turn, intensifies competing hydrogen evolution reaction (HER), which hinders the high-selectivity production of CH on TiO-Cu. CeO-Cu with highest occupied 3d orbital promotes CO activation and its localized electronic state inhibits C-C coupling. The moderate water activity of CeO-Cu facilitates *CO deep hydrogenation without excessively activating HER. Hence, CeO-Cu exhibits the highest CH Faradaic efficiency of 70.3% at 400 mA cm.
在这项工作中,以金属氧化物负载的铜单原子催化剂(AlO-Cu、CeO-Cu和TiO-Cu)作为理论模型,以探索电子结构与CO2RR性能之间的相关性。对于这些催化剂,铜位点与载体之间的电荷转移所诱导的电子-金属-载体相互作用(EMSI)巧妙地调节了铜的电子结构,从而形成不同的最高占据轨道。AlO-Cu的最高占据3d轨道通过3d-π电子回授增强了CO的吸附强度并削弱了C-O键。这降低了C-C偶联的能垒,从而促进了AlO-Cu上多碳产物的形成。TiO-Cu的最高占据3d轨道加速了OH的活化,并降低了形成CH的反应能。这种过度活化的OH反过来又加剧了竞争性析氢反应(HER),从而阻碍了TiO-Cu上CH的高选择性生成。具有最高占据3d轨道的CeO-Cu促进了CO的活化,其局域电子态抑制了C-C偶联。CeO-Cu适度的水活性促进了CO的深度加氢,而不会过度活化HER。因此,CeO-Cu在400 mA cm-2时表现出最高的CH4法拉第效率,为70.3%。