Ortega-Paredes David, Del Canto Felipe, Rios Rafael, Diaz Lorena, Reyes Jinnethe, Arias Cesar A, Zurita Jeannete
Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador.
Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 9170022, Chile.
Antibiotics (Basel). 2025 Feb 17;14(2):206. doi: 10.3390/antibiotics14020206.
() and () are resistant to third-generation cephalosporins (3GCs), carbapenems, colistin, and tigecycline, making them a major public health priority, mainly within the developing world. However, their genomic epidemiology and possible determinants of resistance remain to be elucidated. Thus, this study aimed to perform a genomic characterization of and , both of which are resistant to last-line antibiotics, isolated from humans, poultry, and a dairy farm environment within Ecuador. This study analyzed nine 3GC-resistant isolates harboring the -1 gene (six from poultry farms, two from human infections, and one from dairy farm compost), together with ten isolated colistin- and carbapenem-resistant clinical samples. The isolates of human origin belonged to ST609 and phylogroup A, while the poultry and compost isolates belonged to phylogroups A, B1, E, and F. Diverse STs of the isolates included ST13 (five isolates), ST258 (four isolates), and ST86 (one isolate). Within the isolates, , , , and genes were identified. This study also identified and (the latter in a carbapenem-susceptible isolate). In , the plasmid-borne -1.1 gene was identified across all isolates within an IncI2 plasmid. Tigecycline-reduced susceptibility or resistance was related to missense amino acid substitutions coded in the and A genes. Within , and , on the one hand, and and , on the other, were associated with 3GC and carbapenem resistance, respectively. The allele was identified in a ~10 kb Tn transposon (). In , sequence data and phenotypic analysis linked a nonsense amino acid substitution coded in the (K3*) gene and missense amino acid substitutions coded in the , A, , , , , and genes to colistin resistance. Meanwhile, tigecycline resistance was linked to nonsense and missense amino acid substitutions coded within the sequence. Additionally, this study identified several integron structures, including Int191 (), which was the most prevalent integron (Int) among and isolates in this study, followed by Int0 () and Int18 (). These results contribute to the genomic epidemiology of MDR and in our setting and to the worldwide epidemiology in the One Health approach.
(某菌属)和(另一菌属)对第三代头孢菌素(3GCs)、碳青霉烯类、黏菌素和替加环素耐药,这使其成为主要的公共卫生重点问题,在发展中世界尤为如此。然而,它们的基因组流行病学以及可能的耐药决定因素仍有待阐明。因此,本研究旨在对从厄瓜多尔的人类、家禽和奶牛场环境中分离出的对一线抗生素耐药的(某菌属)和(另一菌属)进行基因组特征分析。本研究分析了9株携带blaCTX-M-1基因的对3GC耐药的(某菌属)分离株(6株来自家禽养殖场,2株来自人类感染,1株来自奶牛场堆肥),以及10株分离出的对黏菌素和碳青霉烯类耐药的(另一菌属)临床样本。源自人类的(某菌属)分离株属于ST609和A系统发育群,而家禽和堆肥分离株属于A、B1、E和F系统发育群。(某菌属)分离株的不同序列型包括ST13(5株分离株)、ST258(4株分离株)和ST86(1株分离株)。在(某菌属)分离株中,鉴定出了blaTEM、blaSHV、blaCTX-M和blaOXA基因。本研究还鉴定出了blaNDM和blaVIM(后者存在于一株对碳青霉烯类敏感的分离株中)。在(某菌属)中,在所有分离株的IncI2质粒中均鉴定出质粒携带的blaCTX-M-1.1基因。替加环素敏感性降低或耐药与gyrA和parC基因中编码的错义氨基酸替换有关。在(另一菌属)中,一方面,blaTEM和blaSHV与对3GC耐药有关,另一方面,blaOXA和blaNDM与对碳青霉烯类耐药有关。blaCTX-M等位基因在一个约10 kb的Tn转座子(Tn1546)中被鉴定出来。在(另一菌属)中,序列数据和表型分析将mgrB(K3*)基因中编码的无义氨基酸替换以及pmrA、pmrB、phoP、phoQ、pbgP、envZ和ompA基因中编码的错义氨基酸替换与黏菌素耐药联系起来。同时,替加环素耐药与16S rRNA序列中编码的无义及错义氨基酸替换有关。此外,本研究鉴定出了几种整合子结构,包括Int191(In53),它是本研究中(某菌属)和(另一菌属)分离株中最常见的整合子(Int),其次是Int0(In2)和Int18(In1)。这些结果有助于我们所研究环境中多重耐药(某菌属)和(另一菌属)的基因组流行病学研究,并有助于“同一健康”方法下的全球流行病学研究。