Suppr超能文献

多孔介质中不混溶且不可压缩两相流的类热力学形式体系。

Thermodynamics-like Formalism for Immiscible and Incompressible Two-Phase Flow in Porous Media.

作者信息

Hansen Alex, Sinha Santanu

机构信息

PoreLab, Department of Physics, Norwegian University of Science and Technology NTNU, N-7491 Trondheim, Norway.

出版信息

Entropy (Basel). 2025 Jan 24;27(2):121. doi: 10.3390/e27020121.

Abstract

It is possible to formulate an immiscible and incompressible two-phase flow in porous media in a mathematical framework resembling thermodynamics based on the Jaynes generalization of statistical mechanics. We review this approach and discuss the meaning of the emergent variables that appear, agiture, flow derivative, and flow pressure, which are conjugate to the configurational entropy, the saturation, and the porosity, respectively. We conjecture that the agiture, the temperature-like variable, is directly related to the pressure gradient. This has as a consequence that the configurational entropy, a measure of how the fluids are distributed within the porous media and the accompanying velocity field, and the differential mobility of the fluids are related. We also develop elements of another version of the thermodynamics-like formalism where fractional flow rather than saturation is the control variable, since this is typically the natural control variable in experiments.

摘要

基于统计力学的杰恩斯推广,有可能在类似于热力学的数学框架中构建多孔介质中的不混溶且不可压缩的两相流。我们回顾这种方法,并讨论出现的新兴变量的意义,即激扰、流动导数和流动压力,它们分别与构型熵、饱和度和孔隙率共轭。我们推测,激扰这个类似温度的变量与压力梯度直接相关。这导致构型熵(一种衡量流体在多孔介质内如何分布以及伴随的速度场的量)与流体的微分迁移率相关。我们还发展了另一种类似热力学形式的元素,其中分流率而非饱和度是控制变量,因为这通常是实验中的自然控制变量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bac/11853973/7202bcd1d7b1/entropy-27-00121-g001.jpg

相似文献

1
2
Ensemble distribution for immiscible two-phase flow in porous media.
Phys Rev E. 2017 Feb;95(2-1):023116. doi: 10.1103/PhysRevE.95.023116. Epub 2017 Feb 27.
3
Application of a lumped-process mathematical model to dissolution of non-uniformly distributed immiscible liquid in heterogeneous porous media.
J Contam Hydrol. 2008 Aug 20;100(1-2):1-10. doi: 10.1016/j.jconhyd.2008.04.003. Epub 2008 Apr 27.
4
Interfacial dynamics of two immiscible fluids in spatially periodic porous media: the role of substrate wettability.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):013003. doi: 10.1103/PhysRevE.90.013003. Epub 2014 Jul 8.
5
Relation between pressure and fractional flow in two-phase flow in porous media.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 2):056310. doi: 10.1103/PhysRevE.65.056310. Epub 2002 May 16.
6
Lattice Boltzmann simulations of binary fluid flow through porous media.
Philos Trans A Math Phys Eng Sci. 2002 Mar 15;360(1792):535-45. doi: 10.1098/rsta.2001.0944.
7
Pore-scale investigation of viscous coupling effects for two-phase flow in porous media.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):026705. doi: 10.1103/PhysRevE.72.026705. Epub 2005 Aug 29.
8
Fluctuation-Dissipation Theorems for Multiphase Flow in Porous Media.
Entropy (Basel). 2021 Dec 27;24(1):46. doi: 10.3390/e24010046.
9
Study of the fluid flow characteristics in a porous medium for CO2 geological storage using MRI.
Magn Reson Imaging. 2014 Jun;32(5):574-84. doi: 10.1016/j.mri.2014.01.021. Epub 2014 Feb 3.
10
Flux-dependent percolation transition in immiscible two-phase flows in porous media.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 2):036310. doi: 10.1103/PhysRevE.79.036310. Epub 2009 Mar 20.

本文引用的文献

1
Fluctuation-Dissipation Theorems for Multiphase Flow in Porous Media.
Entropy (Basel). 2021 Dec 27;24(1):46. doi: 10.3390/e24010046.
2
Thermodynamics of fluctuations based on time-and-space averages.
Phys Rev E. 2021 Sep;104(3-2):035106. doi: 10.1103/PhysRevE.104.035106.
4
More is different.
Science. 1972 Aug 4;177(4047):393-6. doi: 10.1126/science.177.4047.393.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验