Suppr超能文献

用于多孔介质系统中流动和输运现象建模的热力学约束平均理论方法:4. 物种输运基础。

Thermodynamically Constrained Averaging Theory Approach for Modeling Flow and Transport Phenomena in Porous Medium Systems: 4. Species Transport Fundamentals.

作者信息

Miller Cass T, Gray William G

机构信息

Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599-7431, USA.

出版信息

Adv Water Resour. 2008 Mar;31(3):577-597. doi: 10.1016/j.advwatres.2007.11.004.

Abstract

This work is the fourth in a series of papers on the thermodynamically constrained averaging theory (TCAT) approach for modeling flow and transport phenomena in multiscale porous medium systems. The general TCAT framework and the mathematical foundation presented in previous works are built upon by formulating macroscale models for conservation of mass, momentum, and energy, and the balance of entropy for a species in a phase volume, interface, and common curve. In addition, classical irreversible thermodynamic relations for species in entities are averaged from the microscale to the macroscale. Finally, we comment on alternative approaches that can be used to connect species and entity conservation equations to a constrained system entropy inequality, which is a key component of the TCAT approach. The formulations detailed in this work can be built upon to develop models for species transport and reactions in a variety of multiphase systems.

摘要

这项工作是关于热力学约束平均理论(TCAT)方法的系列论文中的第四篇,该方法用于对多尺度多孔介质系统中的流动和传输现象进行建模。通过为相体积、界面和公共曲线中的质量、动量和能量守恒以及物种的熵平衡制定宏观模型,在前作中提出的通用TCAT框架和数学基础得以进一步构建。此外,实体中物种的经典不可逆热力学关系从微观尺度平均到宏观尺度。最后,我们对可用于将物种和实体守恒方程与约束系统熵不等式相连接的替代方法进行了评论,这是TCAT方法的关键组成部分。基于本文详细阐述的公式,可以进一步开发各种多相系统中物种传输和反应的模型。

相似文献

5
A continuum mechanical framework for modeling tumor growth and treatment in two- and three-phase systems.
Arch Appl Mech. 2022 Feb;92(2):461-489. doi: 10.1007/s00419-021-01891-8. Epub 2021 Jun 9.
7
Generalized Newtonian fluid flow in porous media.
Phys Rev Fluids. 2021 Dec;6(12). doi: 10.1103/physrevfluids.6.123302. Epub 2021 Dec 6.
8
TCAT Analysis of Capillary Pressure in Non-equilibrium, Two-fluid-phase, Porous Medium Systems.
Adv Water Resour. 2011 Jun;34(6):770-778. doi: 10.1016/j.advwatres.2011.04.001.
9
Microscale modeling of nondilute flow and transport in porous medium systems.
Phys Rev E. 2020 Sep;102(3-1):033104. doi: 10.1103/PhysRevE.102.033104.

引用本文的文献

1
4
Generalized Newtonian fluid flow in porous media.
Phys Rev Fluids. 2021 Dec;6(12). doi: 10.1103/physrevfluids.6.123302. Epub 2021 Dec 6.
5
A continuum mechanical framework for modeling tumor growth and treatment in two- and three-phase systems.
Arch Appl Mech. 2022 Feb;92(2):461-489. doi: 10.1007/s00419-021-01891-8. Epub 2021 Jun 9.
7
A monolithic multiphase porous medium framework for (a-)vascular tumor growth.
Comput Methods Appl Mech Eng. 2018 Oct 1;340:657-683. doi: 10.1016/j.cma.2018.06.009. Epub 2018 Jun 22.
8
Fluid flow through packings of elastic shells.
Phys Rev E. 2019 Feb;99(2-1):023103. doi: 10.1103/PhysRevE.99.023103.
9
A tumor growth model with deformable ECM.
Phys Biol. 2014 Nov 26;11(6):065004. doi: 10.1088/1478-3975/11/6/065004.
10
USNCTAM perspectives on mechanics in medicine.
J R Soc Interface. 2014 Aug 6;11(97):20140301. doi: 10.1098/rsif.2014.0301.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验