Bergedahl Markus, Narea Pilar, Llanos Jaime, Pulido Ruth, Naveas Nelson, Amo-Ochoa Pilar, Zamora Félix, Delgado Gerzón E, Galleguillos Madrid Felipe M, León Yasna, Brito Iván
Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta 1240000, Chile.
Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile.
Int J Mol Sci. 2025 Feb 15;26(4):1671. doi: 10.3390/ijms26041671.
Two new Cu(II) (CP1) and Co(II) (CP2) coordination polymers (CPs) with the triazole ligand 5-methyl-1-(pyridin-4-yl-methyl)-1H-1,2,3-triazole-4-carboxylate (L1) have been synthesized and structurally characterized by SCXRD (Single Crystal X-Ray Difraccion), PXRD (Power X-Ray Difracction), FT-IR (Fourier Transform Infrared), TG (Theermo Gravimetric), and electrochemical techniques. Both CPs were obtained at the water/n-butanol interface by reacting nitrate salts of each metal with the NaL1 ligand. SCXRD analysis revealed that CP1 (Coordination Polymer 1) and CP2 (Coordination Polymer 2) crystallize in the monoclinic space groups C2/c (No. 15) and P2/n (No. 14), respectively, forming 1D zigzag chain structures, which further lead to a 2D supramolecular network through O-H⋯O and C-H⋯O hydrogen bond interactions, respectively. In CP1, the supramolecular structure is assembled by hydrogen bonds involving water molecules. In contrast, CP2 forms its supramolecular network mainly through hydrogen bonds between adjacent triazole ligand molecules. Hirshfeld surface analysis revealed that the most significant contributions to the crystal packing come from H⋯O/O⋯H, H⋯H, H⋯N/N⋯H, and H⋯C/C⋯H interactions. In addition, FT-IR provided information on the functional groups involved in the coordination, while the decomposition patterns of both CPs were evaluated by TGA. Electrochemical studies conducted in a saline environment showed that CP1 exhibits superior hydrogen evolution reaction (HER) kinetics compared to CP2, as evidenced by a higher exchange current density and a lower Tafel slope. Density functional theory calculations and experimental bandgap measurements provided a deeper understanding of the electronic properties influencing the electrochemical behavior. The results highlight the potential of CP1 as an efficient catalyst for HER under saline conditions.
通过水热法合成了两种新型的具有三唑配体5-甲基-1-(吡啶-4-基甲基)-1H-1,2,3-三唑-4-羧酸酯(L1)的铜(II)(CP1)和钴(II)(CP2)配位聚合物(CPs),并通过单晶X射线衍射(SCXRD)、粉末X射线衍射(PXRD)、傅里叶变换红外光谱(FT-IR)、热重分析(TG)和电化学技术对其进行了结构表征。两种CPs都是通过使每种金属的硝酸盐与NaL1配体在水/正丁醇界面反应得到的。SCXRD分析表明,CP1(配位聚合物1)和CP2(配位聚合物2)分别结晶于单斜空间群C2/c(编号15)和P2/n(编号14),形成一维锯齿链结构,分别通过O-H⋯O和C-H⋯O氢键相互作用进一步形成二维超分子网络。在CP1中,超分子结构是由涉及水分子的氢键组装而成。相比之下,CP2主要通过相邻三唑配体分子之间的氢键形成其超分子网络。Hirshfeld表面分析表明,对晶体堆积贡献最大的是H⋯O/O⋯H、H⋯H、H⋯N/N⋯H和H⋯C/C⋯H相互作用。此外,FT-IR提供了有关配位中涉及的官能团的信息,而两种CPs的分解模式则通过TGA进行了评估。在盐水环境中进行的电化学研究表明,与CP2相比,CP1表现出优异的析氢反应(HER)动力学,这通过更高的交换电流密度和更低的塔菲尔斜率得到证明。密度泛函理论计算和实验带隙测量为影响电化学行为的电子性质提供了更深入的理解。结果突出了CP1作为盐水条件下HER高效催化剂的潜力。