Suppr超能文献

在白天和夜间条件下使用YOLOv8进行交通标志检测和质量评估

Traffic Sign Detection and Quality Assessment Using YOLOv8 in Daytime and Nighttime Conditions.

作者信息

Aldoski Ziyad N, Koren Csaba

机构信息

Department of Highway and Bridge, Technical College of Engineering, Duhok Polytechnic University, Duhok 1006, Kurdistan Region, Iraq.

Department of Transport Infrastructure and Water Resources Engineering, Faculty of Architecture, Civil Engineering and Transportation Sciences, Széchenyi István University, 9026 Győr, Hungary.

出版信息

Sensors (Basel). 2025 Feb 9;25(4):1027. doi: 10.3390/s25041027.

Abstract

Traffic safety remains a pressing global concern, with traffic signs playing a vital role in regulating and guiding drivers. However, environmental factors like lighting and weather often compromise their visibility, impacting human drivers and autonomous vehicle (AV) systems. This study addresses critical traffic sign detection (TSD) and classification (TSC) gaps by leveraging the YOLOv8 algorithm to evaluate the detection accuracy and sign quality under diverse lighting conditions. The model achieved robust performance metrics across day and night scenarios using the novel ZND dataset, comprising 16,500 labeled images sourced from the GTSRB, GitHub repositories, and real-world own photographs. Complementary retroreflectivity assessments using handheld retroreflectometers revealed correlations between the material properties of the signs and their detection performance, emphasizing the importance of the retroreflective quality, especially under night-time conditions. Additionally, video analysis highlighted the influence of sharpness, brightness, and contrast on detection rates. Human evaluations further provided insights into subjective perceptions of visibility and their relationship with algorithmic detection, underscoring areas for potential improvement. The findings emphasize the need for using various assessment methods, advanced algorithms, enhanced sign materials, and regular maintenance to improve detection reliability and road safety. This research bridges the theoretical and practical aspects of TSD, offering recommendations that could advance AV systems and inform future traffic sign design and evaluation standards.

摘要

交通安全仍然是一个紧迫的全球问题,交通标志在规范和引导驾驶员方面发挥着至关重要的作用。然而,照明和天气等环境因素常常会影响交通标志的可见性,对人类驾驶员和自动驾驶车辆(AV)系统都会产生影响。本研究通过利用YOLOv8算法来评估不同光照条件下的检测准确性和标志质量,解决了关键的交通标志检测(TSD)和分类(TSC)差距问题。该模型使用新颖的ZND数据集在白天和夜间场景中均实现了强大的性能指标,该数据集包含从德国交通标志识别基准(GTSRB)、GitHub代码库以及实际拍摄的照片中获取的16,500张标注图像。使用手持式反光仪进行的补充反光率评估揭示了标志的材料特性与其检测性能之间的相关性,强调了反光质量的重要性,尤其是在夜间条件下。此外,视频分析突出了清晰度、亮度和对比度对检测率的影响。人类评估进一步深入了解了可见性的主观感知及其与算法检测的关系,强调了潜在的改进领域。研究结果强调需要使用各种评估方法、先进算法、改进的标志材料以及定期维护,以提高检测可靠性和道路安全性。这项研究弥合了TSD的理论和实践方面,提供了可以推进AV系统发展并为未来交通标志设计和评估标准提供参考的建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b8f/11858850/86bac4a348f3/sensors-25-01027-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验