Foong Yi Chao, Merlo Daniel, Gresle Melissa, Zhu Chao, Buzzard Katherine, Lechner-Scott Jeannette, Barnett Michael, Wang Chenyu, Taylor Bruce V, Kalincik Tomas, Kilpatrick Trevor, Darby David, Dobay Pamela, van Beek Johan, Hyde Robert, Simpson-Yap Steve, Butzkueven Helmut, van der Walt Anneke
Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
Alfred Health, Melbourne, Victoria, Australia.
Ann Clin Transl Neurol. 2025 Apr;12(4):842-850. doi: 10.1002/acn3.70015. Epub 2025 Feb 25.
Cognitive impairment is one of the most common and debilitating symptoms of relapsing-remitting multiple sclerosis (RRMS). Digital cognitive biomarkers require less time and resources and are rapidly gaining popularity in clinical settings. We examined the longitudinal trajectory of the iPad-based Processing Speed Test (PST) and predictors of PST scores.
We prospectively enrolled RRMS patients between 2017 and 2021 across six Australian MS centres. Longitudinal data was analysed with mixed effect modelling and latent class mixed models. We then examined whether latent class group membership predicted confirmed decrease in correct PST responses.
We recruited a total of 1093 participants, of which 724 had complete baseline data with a median follow up duration of 2 years. At a population level, PST trajectory was stable. A small practice effect was present up to the 4th visit. Age, baseline disability, T2 lesion volume, male sex and depression were associated with lower correct PST responses, whilst years of education and full/part-time employment were associated with more correct PST responses. We identified four latent class trajectories of PST. The worst latent class was typified by low baseline PST and lack of a practice effect. Being in the worst latent class was associated with a greater hazard of time to sustained 5% decrease in PST (HR 2.84, 95% CI 1.16-6.94, p = 0.02).
Worse baseline cognitive performance and lack of a practice effect predicted future cognitive decline in RRMS.
认知障碍是复发缓解型多发性硬化症(RRMS)最常见且使人衰弱的症状之一。数字认知生物标志物所需时间和资源较少,在临床环境中迅速受到欢迎。我们研究了基于iPad的处理速度测试(PST)的纵向轨迹以及PST分数的预测因素。
我们在2017年至2021年间前瞻性招募了澳大利亚六个多发性硬化症中心的RRMS患者。使用混合效应模型和潜在类别混合模型对纵向数据进行分析。然后,我们检查潜在类别组成员身份是否预测了PST正确反应的确认下降。
我们共招募了1093名参与者,其中724名拥有完整的基线数据,中位随访时间为2年。在总体水平上,PST轨迹是稳定的。在第4次就诊前存在较小的练习效应。年龄、基线残疾、T2病变体积、男性性别和抑郁与较低的PST正确反应相关,而受教育年限和全职/兼职工作与更多的PST正确反应相关。我们确定了PST的四种潜在类别轨迹。最差的潜在类别以低基线PST和缺乏练习效应为特征。处于最差的潜在类别与PST持续下降5%的时间风险增加相关(风险比2.84,95%置信区间1.16 - 6.94,p = 0.02)。
较差的基线认知表现和缺乏练习效应预测了RRMS患者未来的认知衰退。