Suppr超能文献

一种基于机器人阻尼振动力信号的材料检测概念方法。

A conceptual approach to material detection based on damping vibration-force signals via robot.

作者信息

Saleh Asheghabadi Ahmad, Keymanesh Mohammad, Bahrami Moqadam Saeed, Xu Jing

机构信息

State Key Laboratory of Tribology, The Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipment Control, The Department of Mechanical Engineering, Tsinghua University, Beijing, China.

State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, China.

出版信息

Front Neurorobot. 2025 Feb 11;19:1503398. doi: 10.3389/fnbot.2025.1503398. eCollection 2025.

Abstract

INTRODUCTION

Object perception, particularly material detection, is predominantly performed through texture recognition, which presents significant limitations. These methods are insufficient to distinguish between different materials with similar surface roughness, and noise caused by tactile movements affects the system performance.

METHODS

This paper presents a straightforward, impact-based approach to identifying materials, utilizing the cantilever beam mechanism in the UR5e robot's artificial finger. To detect object material, an elastic metal sheet was fixed to a load cell with an accelerometer and a metal appendage positioned above and below its free end, respectively. After recording the damping force signal and vibration data from the load cell and accelerometer caused by the metal appendage's impact, features such as vibration amplitude, damping time, wavelength, and force amplitude were retrieved. Three machine-learning techniques were then used to classify the objects' materials according to their damping rates. Data clustering was performed using the deflection of the cantilever beam to boost classification accuracy.

RESULTS AND DISCUSSION

Online object materials detection shows an accuracy of 95.46% in a study of ten objects [metals (steel, cast iron), plastics (foam, compressed plastic), wood, silicon, rubber, leather, brick and cartoon]. This method overcomes the limitations of the tactile approach and has the potential to be used in industrial robots.

摘要

引言

物体感知,尤其是材料检测,主要通过纹理识别来进行,而纹理识别存在显著局限性。这些方法不足以区分表面粗糙度相似的不同材料,并且触觉运动产生的噪声会影响系统性能。

方法

本文提出了一种基于冲击的简单方法来识别材料,利用UR5e机器人人工手指中的悬臂梁机构。为了检测物体材料,将一块弹性金属板固定在一个带有加速度计的称重传感器上,并且在其自由端上方和下方分别放置一个金属附件。在记录由金属附件的冲击引起的来自称重传感器和加速度计的阻尼力信号和振动数据后,提取诸如振动幅度、阻尼时间、波长和力幅度等特征。然后使用三种机器学习技术根据物体的阻尼率对其材料进行分类。使用悬臂梁的挠度进行数据聚类以提高分类精度。

结果与讨论

在对十个物体(金属(钢、铸铁)、塑料(泡沫、压缩塑料)、木材、硅、橡胶、皮革、砖块和卡通材料)的研究中,在线物体材料检测显示准确率为95.46%。该方法克服了触觉方法的局限性,具有在工业机器人中应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b98/11850379/eed276980104/fnbot-19-1503398-g0001.jpg

相似文献

1
A conceptual approach to material detection based on damping vibration-force signals via robot.
Front Neurorobot. 2025 Feb 11;19:1503398. doi: 10.3389/fnbot.2025.1503398. eCollection 2025.
2
Advanced tip design for liquid phase vibration mode atomic force microscopy.
Anal Chim Acta. 2008 Mar 24;611(2):233-8. doi: 10.1016/j.aca.2008.01.086. Epub 2008 Feb 15.
4
Analyzing the Vibration Response of Adhesively Bonded Composite Cantilevers.
Materials (Basel). 2024 Dec 29;18(1):93. doi: 10.3390/ma18010093.
5
Experimental Investigation of Damping Properties of Selected Polymer Materials.
Materials (Basel). 2024 Jun 20;17(12):3021. doi: 10.3390/ma17123021.
7
Influence of Temperature on the Damping Properties of Selected Viscoelastic Materials.
Materials (Basel). 2024 Nov 28;17(23):5832. doi: 10.3390/ma17235832.
9
Research on Vibration Control Technology of Robot Motion Based on Magnetorheological Elastomer.
Materials (Basel). 2022 Sep 18;15(18):6479. doi: 10.3390/ma15186479.
10
Experimental Evaluation of a Granular Damping Element.
Polymers (Basel). 2024 May 19;16(10):1440. doi: 10.3390/polym16101440.

本文引用的文献

2
Fabric Classification Using a Finger-Shaped Tactile Sensor Robotic Sliding.
Front Neurorobot. 2022 Feb 23;16:808222. doi: 10.3389/fnbot.2022.808222. eCollection 2022.
3
Conceptual Method of Temperature Sensation in Bionic Hand by Extraordinary Perceptual Phenomenon.
J Bionic Eng. 2021;18(6):1344-1357. doi: 10.1007/s42235-021-00112-w. Epub 2021 Nov 29.
4
Fingerpad-Inspired Multimodal Electronic Skin for Material Discrimination and Texture Recognition.
Adv Sci (Weinh). 2021 Feb 8;8(9):2002606. doi: 10.1002/advs.202002606. eCollection 2021 May.
5
Hybrid control combined with a voluntary biosignal to control a prosthetic hand.
Robotics Biomim. 2018;5(1):4. doi: 10.1186/s40638-018-0087-5. Epub 2018 Sep 19.
6
Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors.
IEEE Trans Haptics. 2016 Apr-Jun;9(2):207-20. doi: 10.1109/TOH.2016.2521378. Epub 2016 Jan 25.
7
A cluster separation measure.
IEEE Trans Pattern Anal Mach Intell. 1979 Feb;1(2):224-7.
8
Extracting textural features from tactile sensors.
Bioinspir Biomim. 2008 Sep;3(3):035002. doi: 10.1088/1748-3182/3/3/035002. Epub 2008 Jun 27.
9
Mechanical properties and Young's modulus of human skin in vivo.
Arch Dermatol Res. 1980;269(3):221-32. doi: 10.1007/BF00406415.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验