Spiers Adam J, Liarokapis Minas V, Calli Berk, Dollar Aaron M
IEEE Trans Haptics. 2016 Apr-Jun;9(2):207-20. doi: 10.1109/TOH.2016.2521378. Epub 2016 Jan 25.
Classical robotic approaches to tactile object identification often involve rigid mechanical grippers, dense sensor arrays, and exploratory procedures (EPs). Though EPs are a natural method for humans to acquire object information, evidence also exists for meaningful tactile property inference from brief, non-exploratory motions (a 'haptic glance'). In this work, we implement tactile object identification and feature extraction techniques on data acquired during a single, unplanned grasp with a simple, underactuated robot hand equipped with inexpensive barometric pressure sensors. Our methodology utilizes two cooperating schemes based on an advanced machine learning technique (random forests) and parametric methods that estimate object properties. The available data is limited to actuator positions (one per two link finger) and force sensors values (eight per finger). The schemes are able to work both independently and collaboratively, depending on the task scenario. When collaborating, the results of each method contribute to the other, improving the overall result in a synergistic fashion. Unlike prior work, the proposed approach does not require object exploration, re-grasping, grasp-release, or force modulation and works for arbitrary object start positions and orientations. Due to these factors, the technique may be integrated into practical robotic grasping scenarios without adding time or manipulation overheads.
传统的用于触觉物体识别的机器人方法通常涉及刚性机械夹具、密集传感器阵列和探索程序(EPs)。尽管探索程序是人类获取物体信息的自然方法,但也有证据表明,通过短暂的、非探索性的动作(“触觉一瞥”)可以进行有意义的触觉属性推断。在这项工作中,我们利用一个配备了廉价气压传感器的简单欠驱动机器人手,在单次无计划抓取过程中获取的数据,实现了触觉物体识别和特征提取技术。我们的方法利用了基于先进机器学习技术(随机森林)和估计物体属性的参数方法的两种协作方案。可用数据仅限于执行器位置(每两个手指关节一个)和力传感器值(每个手指八个)。根据任务场景,这些方案能够独立工作,也能够协同工作。协同工作时,每种方法的结果会相互促进,以协同的方式提高整体结果。与先前的工作不同,所提出的方法不需要物体探索、重新抓取、抓放或力调制,并且适用于任意物体起始位置和方向。由于这些因素,该技术可以集成到实际的机器人抓取场景中,而不会增加时间或操作开销。