Suppr超能文献

用于多元时间序列的基于动态图的双边递归插补网络

Dynamic graph-based bilateral recurrent imputation network for multivariate time series.

作者信息

Lai Xiaochen, Zhang Zheng, Zhang Liyong, Lu Wei, Li ZhuoHan

机构信息

School of Software, Dalian University of Technology, Dalian 116600, China.

School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China.

出版信息

Neural Netw. 2025 Jun;186:107298. doi: 10.1016/j.neunet.2025.107298. Epub 2025 Feb 19.

Abstract

Multivariate time series imputation using graph neural networks (GNNs) has gained significant attention, where the variables and their correlations are depicted as the graph nodes and edges, offering a structured way to understand the intricacies of multivariate time series. On this basis, existing GNNs typically make the assumption of static correlations between variables, using a graph with fixed edge weights to model multivariate relationships. However, the static assumption is usually inconsistent with the dynamic nature of real-world data, where correlations between variables tend to change over time. In this paper, we propose a dynamic graph-based bilateral recurrent imputation network (DGBRIN) to address the above issue. Specifically, for each segment of a multivariate time series captured within a sliding window, we construct a specialized graph to capture the localized, dynamic correlations between variables. To this end, we design a dynamic adjacency matrix learning (DAML) module, which integrates temporal dependencies through an information fusion layer and mine localized monotonic correlations between variables using the Spearman rank correlation coefficient. These correlations are represented in segment-specific adjacency matrices. Subsequently, the adjacency matrices and time series are fed into a hybrid graph-based bilateral recurrent network for missing value imputation, which combines the advantages of recurrent neural networks and graph convolutional networks to effectively capture temporal dependencies and merge the correlation information between variables. We conduct experiments on eight real-world time series. The results demonstrate the effectiveness of the proposed model.

摘要

使用图神经网络(GNN)进行多变量时间序列插补已受到广泛关注,其中变量及其相关性被描绘为图节点和边,为理解多变量时间序列的复杂性提供了一种结构化方法。在此基础上,现有的GNN通常假设变量之间存在静态相关性,使用具有固定边权重的图来建模多变量关系。然而,这种静态假设通常与现实世界数据的动态性质不一致,在现实世界数据中,变量之间的相关性往往会随时间变化。在本文中,我们提出了一种基于动态图的双边循环插补网络(DGBRIN)来解决上述问题。具体来说,对于在滑动窗口内捕获的多变量时间序列的每个片段,我们构建一个专门的图来捕获变量之间的局部动态相关性。为此,我们设计了一个动态邻接矩阵学习(DAML)模块,该模块通过信息融合层整合时间依赖性,并使用斯皮尔曼等级相关系数挖掘变量之间的局部单调相关性。这些相关性在特定于片段的邻接矩阵中表示。随后,将邻接矩阵和时间序列输入到基于混合图的双边循环网络中进行缺失值插补,该网络结合了递归神经网络和图卷积网络的优点,以有效地捕获时间依赖性并合并变量之间的相关信息。我们在八个真实世界的时间序列上进行了实验。结果证明了所提出模型的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验