González-Serrano Francisco, Romero-Contreras Yordan J, Orta Alberto H, Basanta M Delia, Morales Hugo, Sandoval García Gabriela, Bello-López Elena, Escobedo-Muñoz A S, Bustamante Víctor H, Ávila-Akerberg Víctor, Cevallos Miguel Ángel, Serrano Mario, Rebollar Eria A
Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Morelos, 62210, México.
School of Environmental and Natural Sciences, Molecular Ecology & Evolution Group, Prifysgol Bangor University, Bangor, LL57 2DG, UK.
World J Microbiol Biotechnol. 2025 Feb 27;41(3):78. doi: 10.1007/s11274-025-04292-z.
Emerging diseases caused by fungi are a serious threat to wildlife biodiversity. The widespread fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused dramatic amphibian population declines and species extinctions worldwide. While many amphibians have been negatively affected by Bd, some populations/species have persisted despite its presence. One factor contributing to amphibian protection against this fungus is the host-associated skin microbiome. In this study, we aimed to identify gene clusters associated with the antifungal activity of amphibian skin bacteria. Specifically, we explored skin bacteria isolated from species that have persisted in the wild despite the presence of Bd: the frogs Agalychnis callidryas, Craugastor fitzingeri, Dendropsophus ebraccatus, and the axolotl Ambystoma altamirani. Bacterial isolates were tested in vitro for their capacity to inhibit the growth of two fungal pathogens: Bd and the phytopathogen Botrytis cinerea (Bc). Genome mining of these bacterial isolates revealed a diverse repertoire of Biosynthetic Gene Clusters (BGCs) and chitin-degrading gene families (ChDGFs) whose composition and abundance differed among bacterial families. We found specific BGCs and ChDGFs that were associated with the capacity of bacteria to inhibit the growth of either Bd or Bc, suggesting that distinct fungi could be inhibited by different molecular mechanisms. By using similarity networks and machine learning, we identified BGCs encoding known antifungal compounds such as viscosin, fengycin, zwittermicin, as well as siderophores and a novel family of beta-lactones. Finally, we propose that the diversity of BGCs found in amphibian skin bacteria comprise a substantial genetic reservoir that could collectively explain the antifungal properties of the amphibian skin microbiome.
由真菌引起的新出现疾病对野生动物生物多样性构成严重威胁。广泛传播的真菌病原体蛙壶菌(Batrachochytrium dendrobatidis,简称Bd)已导致全球两栖动物数量急剧下降和物种灭绝。虽然许多两栖动物受到Bd的负面影响,但一些种群/物种在其存在的情况下仍得以存续。两栖动物抵御这种真菌的一个因素是与宿主相关的皮肤微生物群。在本研究中,我们旨在鉴定与两栖动物皮肤细菌抗真菌活性相关的基因簇。具体而言,我们探索了从尽管存在Bd但仍在野外存续的物种中分离出的皮肤细菌:绿雨滨蛙(Agalychnis callidryas)、费氏溪蟾(Craugastor fitzingeri)、斑腿泛树蛙(Dendropsophus ebraccatus)以及美西钝口螈(Ambystoma altamirani)。对细菌分离株进行体外测试,以检测它们抑制两种真菌病原体生长的能力:Bd和植物病原体灰葡萄孢(Botrytis cinerea,简称Bc)。对这些细菌分离株进行基因组挖掘,发现了生物合成基因簇(BGCs)和几丁质降解基因家族(ChDGFs)的多样组合,其组成和丰度在不同细菌家族中有所不同。我们发现了与细菌抑制Bd或Bc生长能力相关的特定BGCs和ChDGFs,这表明不同的真菌可能受到不同分子机制的抑制。通过使用相似性网络和机器学习,我们鉴定出了编码已知抗真菌化合物(如黏性菌素、丰原素、两性霉素)以及铁载体和一个新型β-内酯家族的BGCs。最后,我们提出在两栖动物皮肤细菌中发现的BGCs多样性构成了一个庞大的基因库,这可以共同解释两栖动物皮肤微生物群的抗真菌特性。