McCombe Carl L, Wegner Alex, Wirtz Louisa, Zamora Chenie S, Casanova Florencia, Aditya Shouvik, Greenwood Julian R, de Paula Samuel, England Eleanor, Shang Sascha, Ericsson Daniel J, Oliveira-Garcia Ely, Williams Simon J, Schaffrath Ulrich
Research School of Biology, The Australian National University, Canberra, ACT, Australia.
Department of Molecular Plant Physiology, RWTH Aachen University, Aachen, Germany.
Science. 2025 Feb 28;387(6737):955-962. doi: 10.1126/science.adl5764. Epub 2025 Feb 27.
Inorganic phosphate (Pi) is essential for life, and plant cells monitor Pi availability by sensing inositol pyrophosphate (PP-InsP) levels. In this work, we describe the hijacking of plant phosphate sensing by a conserved family of Nudix hydrolase effectors from pathogenic and fungi. Structural and enzymatic analyses of the Nudix effector family demonstrate that they selectively hydrolyze PP-InsP. Gene deletion experiments of Nudix effectors in , , and indicate that PP-InsP hydrolysis substantially enhances disease symptoms in diverse pathosystems. Further, we show that this conserved effector family induces phosphate starvation signaling in plants. Our study elucidates a molecular mechanism, used by multiple phytopathogenic fungi, that manipulates the highly conserved plant phosphate sensing pathway to exacerbate disease.
无机磷酸盐(Pi)对生命至关重要,植物细胞通过感知肌醇焦磷酸(PP-InsP)水平来监测Pi的可用性。在这项工作中,我们描述了来自致病细菌和真菌的保守Nudix水解酶效应子家族对植物磷酸盐感知的劫持。对Nudix效应子家族的结构和酶学分析表明,它们选择性地水解PP-InsP。在[具体植物名称1]、[具体植物名称2]和[具体植物名称3]中对Nudix效应子进行基因缺失实验表明,PP-InsP水解在多种病理系统中显著增强了疾病症状。此外,我们表明这个保守的效应子家族在植物中诱导磷酸盐饥饿信号。我们的研究阐明了多种植物病原真菌所使用的一种分子机制,该机制操纵高度保守的植物磷酸盐感知途径以加剧疾病。