Wade Benjamin S C, Pindale Ryan, Luccarelli James, Li Shuang, Meisner Robert C, Seiner Stephen J, Camprodon Joan A, Henry Michael E
Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Department of Psychiatry, McLean Hospital, Belmont, MA, USA.
NPJ Digit Med. 2025 Feb 27;8(1):127. doi: 10.1038/s41746-025-01523-3.
Electroconvulsive therapy (ECT) and ketamine are effective treatments for depression; however, evidence-based guidelines are needed to inform individual treatment selection. We adapted the Personalized Advantage Index (PAI) using machine learning to predict optimal treatment assignment to ECT or ketamine using EHR data on 2506 ECT and 196 ketamine patients. Depressive symptoms were evaluated using the Quick Inventory of Depressive Symptomatology (QIDS) before and during acute treatment. Propensity score matching across treatments was used to address confounding by indication, yielding a sample of 392 patients (n = 196 per treatment). Models predicted differential minimum QIDS scores (min-QIDS) over acute treatment using pretreatment EHR measures and SHAP values identified prescriptive predictors. Patients with large PAI scores who received a predicted optimal had significantly lower min-QIDS compared to the non-optimal treatment group (mean difference = 1.19 [95% CI: 0.32, ∞], t = 2.25, q < 0.05, d = 0.26). Our model identified candidate pretreatment factors to provide actionable, effective antidepressant treatment selection guidelines.
电休克疗法(ECT)和氯胺酮是治疗抑郁症的有效方法;然而,需要基于证据的指南来指导个体治疗选择。我们采用机器学习方法对个性化优势指数(PAI)进行了调整,以利用2506例接受ECT治疗的患者和196例接受氯胺酮治疗的患者的电子健康记录(EHR)数据,预测ECT或氯胺酮的最佳治疗分配。在急性治疗前和治疗期间,使用抑郁症状快速清单(QIDS)评估抑郁症状。采用倾向评分匹配法来解决治疗指征的混杂问题,最终得到392例患者的样本(每种治疗方法各196例)。模型使用治疗前的EHR测量值预测急性治疗期间的最低QIDS评分差异(min-QIDS),SHAP值确定了处方预测因子。与非最佳治疗组相比,PAI得分高且接受预测最佳治疗的患者的min-QIDS显著更低(平均差异=1.19 [95%CI:0.32,∞],t=2.25,q<0.05,d=0.26)。我们的模型确定了候选治疗前因素,以提供可行的、有效的抗抑郁治疗选择指南。