Suppr超能文献

通过第一性原理计算研究铜、银和金元素掺杂对β-GaO电子和光学性质的影响。

Effects of Cu, Ag, and Au Elements Doping on the Electronic and Optical Properties of β-GaO via First-Principles Calculations.

作者信息

Wang Jie, Guo Xin, Bao Aida, Ma Yongqiang, Wang Yayou, Xu Xinhao, Li Yurou, Yang Dongyu, Zhao Yongpeng, Liu Zeng, You Yajun, Han Xingcheng

机构信息

National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, China.

Shanxi Province Key Laboratory of Intelligent Detection Technology & Equipment, North University of China, Taiyuan 030051, Shanxi, China.

出版信息

ACS Appl Mater Interfaces. 2025 Mar 12;17(10):15675-15687. doi: 10.1021/acsami.5c00938. Epub 2025 Feb 27.

Abstract

β-GaO, as a semiconductor material with an ultrawide band gap ( > 4.8 eV), emerges as a promising candidate for ultraviolet (UV)-transparent semiconductors. Its distinctive property of high transparency from visible light to the ultraviolet region gives it broad application prospects in the fields of deep UV light-emitting diodes (LEDs), UV lasers, and electronic devices. This study employed first-principles calculations utilizing the generalized gradient approximation+ (GGA+) method to investigate the impact of doping β-GaO with transition metals including copper (Cu), silver (Ag), and gold (Au) on its electronic structure and optical properties. The findings reveal that under oxygen (O)-rich conditions, the formation energy of the doped system is lower compared to gallium (Ga)-rich conditions. And the Cu-doped β-GaO is demonstrated to possess the lowest formation energy, indicating an enhanced stability of the β-GaO. Additionally, the intrinsic band gap of β-GaO is calculated to be 4.853 eV, whereas the band gaps of transition metal (TM)-doped β-GaO are significantly reduced. Specifically, the band gaps of Cu-doped, Ag-doped, and Au-doped β-GaO are 1.228, 0.982, and 1.648 eV, respectively. This reduction can be attributed to the introduction of impurity levels by the transition metals, which modify the electron distribution of gallium and oxygen atoms in the vicinity of the Fermi level. Remarkably, β-GaO exhibits superior ultraviolet light absorption performance, and the incorporation of transition metals such as Cu, Ag, and Au facilitates the expansion of the absorption region from the ultraviolet to the visible light range. This transformation not only enhances the material's light-harvesting capability but also improves the electron transition capability of the intrinsic β-GaO, providing a crucial theoretical foundation for the development of novel β-GaO-based optoelectronic devices.

摘要

β-氧化镓作为一种具有超宽带隙(>4.8电子伏特)的半导体材料,成为紫外(UV)透明半导体的一个有前景的候选材料。其从可见光到紫外区域的高透明度这一独特性质,使其在深紫外发光二极管(LED)、紫外激光器和电子器件领域具有广阔的应用前景。本研究采用广义梯度近似+(GGA+)方法的第一性原理计算,来研究用包括铜(Cu)、银(Ag)和金(Au)在内的过渡金属掺杂β-氧化镓对其电子结构和光学性质的影响。研究结果表明,在富氧条件下,掺杂体系的形成能比富镓条件下更低。并且,掺铜的β-氧化镓被证明具有最低的形成能,表明β-氧化镓的稳定性增强。此外,计算得出β-氧化镓的本征带隙为4.853电子伏特,而过渡金属(TM)掺杂的β-氧化镓的带隙显著减小。具体而言,掺铜、掺银和掺金的β-氧化镓的带隙分别为1.228、0.982和1.648电子伏特。这种减小可归因于过渡金属引入的杂质能级,其改变了费米能级附近镓和氧原子的电子分布。值得注意的是,β-氧化镓表现出优异的紫外光吸收性能,并且掺入铜、银和金等过渡金属有助于吸收区域从紫外扩展到可见光范围。这种转变不仅增强了材料的光捕获能力,还提高了本征β-氧化镓的电子跃迁能力,为新型β-氧化镓基光电器件的开发提供了关键的理论基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验