Sun Yi, Lin Mocheng
Fuzhou University of International Studies and Trade, Fuzhou, Fujian, China.
Front Psychol. 2025 Jan 27;16:1499563. doi: 10.3389/fpsyg.2025.1499563. eCollection 2025.
Metonymy has gained increasing attention for its role in shaping language, thought, and communication. Despite its prominence, the thematic evolution and future directions of metonymy research remain underexplored. This study seeks to address this gap by analyzing metonymy research published between 2000 and 2023, providing a comprehensive overview of its key trends and emerging themes.
A bibliometric analysis was conducted using data sourced from the Social Science Citation Index (SSCI) within the Web of Science Core Collection. Co-citation and co-word analysis were employed alongside k-means clustering techniques to identify research themes. Predictive modeling, including ARIMA and LSTM approaches, was used to forecast future research topics based on keyword trends.
The analysis identified 11 key research clusters, highlighting the central role of cognitive and conceptual linguistics in metonymy research, along with its applications in semantics, pragmatics, and multimodal contexts. Predictive modeling suggested the emergence of seven new research themes for 2024-2028, including the interaction between metonymy and discourse, its role in multimodal communication, and its application in social and cultural narratives.
This study underscores the interdisciplinary nature of metonymy research, bridging linguistic, cognitive, and social dimensions. The findings highlight promising areas for future exploration, namely, its integration into digital communication and its impact on cultural identity construction. The methodological approach offers a robust framework for analyzing and predicting research trends, paving the way for innovative contributions to the field.
转喻因其在塑造语言、思维和交流方面的作用而受到越来越多的关注。尽管其地位显著,但转喻研究的主题演变和未来方向仍未得到充分探索。本研究旨在通过分析2000年至2023年发表的转喻研究来填补这一空白,全面概述其关键趋势和新兴主题。
使用来自科学网核心合集的社会科学引文索引(SSCI)的数据进行文献计量分析。共被引分析和共词分析与k均值聚类技术一起用于识别研究主题。预测建模,包括自回归积分移动平均(ARIMA)和长短期记忆网络(LSTM)方法,被用于根据关键词趋势预测未来的研究主题。
分析确定了11个关键研究集群,突出了认知和概念语言学在转喻研究中的核心作用,以及其在语义学、语用学和多模态语境中的应用。预测建模表明,2024年至2028年将出现七个新的研究主题,包括转喻与话语的相互作用、其在多模态交流中的作用以及其在社会和文化叙事中的应用。
本研究强调了转喻研究的跨学科性质,跨越了语言、认知和社会维度。研究结果突出了未来探索的有前景的领域,即其融入数字通信以及其对文化身份建构的影响。该方法论方法为分析和预测研究趋势提供了一个强大的框架,为该领域的创新贡献铺平了道路。