Lee Seungjun, Choe Goeun, Yi Jongdarm, Kim Junghyun, Lee Sun Hong, Jeon Jin, Yang Hee Seok, Lee Jae Young
School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
Mater Today Bio. 2024 Oct 10;29:101289. doi: 10.1016/j.mtbio.2024.101289. eCollection 2024 Dec.
Mesenchymal stem cell (MSC) transplantation is widely recognized as a promising treatment for peripheral artery diseases because of their unique ability to secrete multiple growth factors and immunomodulatory cytokines. However, direct administration of MSCs frequently results in insufficient therapeutic efficacy due to low viability and poor retention at the implantation site. The delivery of MSCs in microsized hydrogels allows for simple injection, improved retention, and enhanced cell protection. However, the high oxidative stress present in ischemic tissues significantly impairs the viability and therapeutic activity of transplanted MSCs. This study aimed to develop a simple and effective method for fabricating reactive oxygen species (ROS)-scavenging microgels to enhance the MSC efficacy for ischemic hindlimb treatment. Specifically, tip-sonicated graphene oxide (GO)/alginate (sGO/alginate) microgels exhibited significantly increased antioxidizing activity against various ROS compared with pristine GO/alginate microgels. MSCs encapsulated in sGO/alginate microgels (MSC/sGO/alginate) demonstrated higher viability than those encapsulated in alginate or GO/alginate microgels under various oxidative stress conditions. Furthermore, human umbilical vein endothelial cells co-cultured with MSCs encapsulated in sGO/alginate microgels formed more tubes under both normal and HO-treated conditions, implying enhanced pro-angiogenic potential of the MSCs. In vivo experiments using hindlimb ischemia mouse models revealed significant improvements in blood perfusion, limb salvage, vascularization, and MSC survival in the MSC/sGO/alginate group compared with the other groups (MSC, MSC/alginate, and MSC/GO/alginate). The strategy developed in this study offers a straightforward and powerful method for treating various ROS-related diseases, including ischemia.
间充质干细胞(MSC)移植因其独特的分泌多种生长因子和免疫调节细胞因子的能力,被广泛认为是治疗外周动脉疾病的一种有前景的方法。然而,由于MSC的活力低且在植入部位的留存性差,直接注射MSC常常导致治疗效果不佳。将MSC包裹在微米尺寸的水凝胶中可以实现简单注射、提高留存率并增强细胞保护。然而,缺血组织中存在的高氧化应激会显著损害移植的MSC的活力和治疗活性。本研究旨在开发一种简单有效的方法来制备清除活性氧(ROS)的微凝胶,以增强MSC对缺血后肢治疗的效果。具体而言,与原始的氧化石墨烯(GO)/藻酸盐微凝胶相比,经尖端超声处理的氧化石墨烯(sGO)/藻酸盐微凝胶对各种ROS表现出显著增强的抗氧化活性。在各种氧化应激条件下,包裹在sGO/藻酸盐微凝胶(MSC/sGO/藻酸盐)中的MSC比包裹在藻酸盐或GO/藻酸盐微凝胶中的MSC具有更高的活力。此外,在正常和过氧化氢处理条件下,与包裹在sGO/藻酸盐微凝胶中的MSC共培养的人脐静脉内皮细胞形成了更多的管腔,这意味着MSC的促血管生成潜力增强。使用后肢缺血小鼠模型进行的体内实验表明,与其他组(MSC、MSC/藻酸盐和MSC/GO/藻酸盐)相比,MSC/sGO/藻酸盐组在血液灌注、肢体挽救、血管生成和MSC存活方面有显著改善。本研究中开发的策略为治疗包括缺血在内的各种与ROS相关的疾病提供了一种直接且有效的方法。