Suppr超能文献

Establishment of an efficient and economical method for primary oligodendrocyte progenitor cell culture from neonatal mouse brain.

作者信息

Liu Hong, Yuan Yimin, Li Jiali, Lan Zhida, Dai Ziwei, Li Guanyu, Xiao Kouwei, Pu Yingyan, He Cheng, Qin Shangyao, Su Zhida

机构信息

Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.

Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China; Department of Pain Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China.

出版信息

Brain Res. 2025 Apr 15;1853:149519. doi: 10.1016/j.brainres.2025.149519. Epub 2025 Feb 27.

Abstract

The primary culture of oligodendrocyte progenitor cells (OPCs) provides an indispensable tool for characterizing their biological properties and myelin repair potential. However, the current OPC preparation methods are mainly limited to rat tissues, and it remains a substantial challenge for replicating the primary culture from mouse tissues to generate large quantities of high-quality OPCs. Here, we describe a protocol to successfully establish highly enriched OPC cultures from the cerebral cortex of mice at the age of neonatal 3 days. OPCs were isolated and purified from the bed layer of astrocytes by shaking for 6 h at 250 rpm. Using this protocol, mouse OPCs can be easily produced in bulk and economically without the need for specific cell-surface antibodies and equipment. These mouse OPC cultures were identified by immunocytochemical, immunobloting and RNA-seq analysis. Furthermore, they could be expanded in vitro and differentiate into mature oligodendrocytes. We propose this method as a viable and affordable protocol to obtain mouse OPC culture, which should significantly facilitate studies on OPC lineage progression and their application in myelin-related disease modeling and regenerative medicine.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验