Mao Qin, Liu Jiajing, Yan Yu, Wang Gang, Zhang Miao, Wang Zhuo, Wen Xiaowei, Jiang Zefeng, Li Haijing, Li Jing, Xu Mingyang, Zhang Rong, Yang Baofeng
College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China.
College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China.
Phytomedicine. 2025 May;140:156545. doi: 10.1016/j.phymed.2025.156545. Epub 2025 Mar 1.
Idiopathic pulmonary fibrosis (IPF) is an irreversible lung disease for which there is a lack of effective and safe therapeutic drugs. 13-Methylpalmatine (13-Me-PLT) is an active compound from Coptis chinensis, and no study has yet been reported on its pharmacological effects in pulmonary fibrotic diseases. The group has previously demonstrated the antimyocardial fibrosis efficacy of 13-Me-PLT but its effect on pulmonary fibrosis and its potential mechanism has not yet been investigated.
The present research is designed to clarify the therapeutic potential and mechanism of action of 13-Me-PLT in IPF using a bleomycin (BLM)-induced mouse model of IPF.
In vivo, mice were administrated with BLM to establish the IPF model, and IPF mice were treated with 13-Me-PLT (5, 10, and 20 mg/kg) and pirfenidone (PFD, 300 mg/kg) by gavage. In vitro, we employed TGF-β1 (10 ng/ml)-induced MRC5 cells, which were then treated with 13-Me-PLT (5, 10, 20 μM) and PFD (500 μM). High-throughput transcriptome sequencing, molecular dynamics simulations, molecular docking and Surface plasmon resonance (SPR) were employed to elucidate the underlying mechanisms of 13-Me-PLT in mitigating IPF.
In vivo experiments showed that 13-Me-PLT significantly ameliorated BLM-induced lung fibrosis in mice. In vitro studies, 13-Me-PLT showed good antifibrotic potential by inhibiting fibroblast differentiation. Transcriptomic analysis of mouse lung tissues identified ITGA5 and TGF-β/Smad signaling pathways as key targets for the antifibrotic effects of 13-Me-PLT. Molecular docking and kinetic analyses further supported these findings. Functional studies involving ITGA5 silencing and overexpression confirmed that 13-Me-PLT down-regulated ITGA5 expression and inhibited the activation of the TGF-β/Smad signaling pathway, confirming its mechanism of action.
To our best knowledge, these results provide the first insight that 13-Me-PLT is protective against BLM-induced IPF in mice. Unlike existing antifibrotic drugs, 13-Me-PLT specifically targets the ITGA5/TGF-β/Smad signaling pathway, offering a novel and potentially more effective therapeutic approach. This study not only validates the antifibrotic efficacy of 13-Me-PLT but also elucidates its unique mechanism of action, these findings may provide an opportunity to develop new drugs to treat IPF.
特发性肺纤维化(IPF)是一种不可逆的肺部疾病,目前缺乏有效且安全的治疗药物。13-甲基巴马汀(13-Me-PLT)是黄连中的一种活性化合物,尚未有关于其在肺纤维化疾病中的药理作用的研究报道。该研究团队之前已证明13-Me-PLT具有抗心肌纤维化的功效,但其对肺纤维化的作用及其潜在机制尚未得到研究。
本研究旨在利用博来霉素(BLM)诱导的IPF小鼠模型,阐明13-Me-PLT在IPF中的治疗潜力及作用机制。
在体内实验中,给小鼠注射BLM以建立IPF模型,然后对IPF小鼠通过灌胃给予13-Me-PLT(5、10和20mg/kg)和吡非尼酮(PFD,300mg/kg)。在体外实验中,我们使用转化生长因子-β1(TGF-β1,10ng/ml)诱导MRC5细胞,然后用13-Me-PLT(5、10、20μM)和PFD(500μM)处理这些细胞。采用高通量转录组测序、分子动力学模拟、分子对接和表面等离子体共振(SPR)来阐明13-Me-PLT减轻IPF的潜在机制。
体内实验表明,13-Me-PLT显著改善了BLM诱导的小鼠肺纤维化。体外研究表明,13-Me-PLT通过抑制成纤维细胞分化显示出良好的抗纤维化潜力。对小鼠肺组织的转录组分析确定整合素α5(ITGA5)和TGF-β/Smad信号通路是13-Me-PLT抗纤维化作用的关键靶点。分子对接和动力学分析进一步支持了这些发现。涉及ITGA5基因沉默和过表达的功能研究证实,13-Me-PLT下调ITGA5表达并抑制TGF-β/Smad信号通路的激活,从而证实了其作用机制。
据我们所知,这些结果首次表明13-Me-PLT对BLM诱导的小鼠IPF具有保护作用。与现有的抗纤维化药物不同,13-Me-PLT特异性靶向ITGA5/TGF-β/Smad信号通路,提供了一种新颖且可能更有效的治疗方法。本研究不仅验证了13-Me-PLT的抗纤维化功效,还阐明了其独特的作用机制,这些发现可能为开发治疗IPF的新药提供机会。