Schraivogel Stephan, Weder Stefan, Mantokoudis Georgios, Caversaccio Marco, Wimmer Wilhelm
IEEE Trans Biomed Eng. 2025 Apr;72(4):1453-1464. doi: 10.1109/TBME.2024.3509527. Epub 2025 Mar 21.
Ensuring the correct positioning of the electrode array during cochlear implant surgery is crucial for achieving optimal results. Electrical impedance measurements have recently emerged as a promising alternative to radiological imaging for electrode localization after surgery. This study aims to assess the performance of various machine learning algorithms to regress electrode locations using impedance telemetry.
We conducted a comprehensive performance analysis on a selection of different models and features in an evaluation dataset of 118 cases. A final evaluation was performed on a hold-out dataset consisting of 13 cases. All cases used the same lateral wall electrode array with a length of . Model performance was benchmarked against existing models, emphasizing those previously published.
The best-performing model for predicting linear insertion depth (Extremely Randomized Trees) achieved a mean absolute error of (mean standard deviation) using leave-one-out cross-validation. We further reviewed the models in terms of feature importance and sensitivity to improve their interpretability and reliability. The gradient direction of the impedance matrix was found as one of the most important features.
Our results demonstrate that our machine learning approach is superior to previous models and has potential for use in routine clinical practice. In future studies, it needs to be confirmed that the models can generalize to other, i.e., shorter or longer, electrode arrays.
The presented method for localizing implanted electrode contacts could also be relevant for neural prostheses with similar boundary conditions, such as vestibular implants.
在人工耳蜗植入手术中确保电极阵列的正确定位对于获得最佳效果至关重要。电阻抗测量最近已成为术后电极定位的一种有前景的替代放射成像的方法。本研究旨在评估各种机器学习算法使用阻抗遥测回归电极位置的性能。
我们在118例的评估数据集中对一系列不同模型和特征进行了全面的性能分析。在由13例组成的保留数据集中进行了最终评估。所有病例均使用相同的长度为 的侧壁电极阵列。模型性能以现有模型为基准进行评估,重点是先前发表的模型。
预测线性插入深度的最佳性能模型(极端随机树)在留一法交叉验证中实现了(平均标准差)的平均绝对误差。我们进一步从特征重要性和敏感性方面审查了模型,以提高其可解释性和可靠性。发现阻抗矩阵的梯度方向是最重要的特征之一。
我们的结果表明,我们的机器学习方法优于先前的模型,并且有在常规临床实践中使用的潜力。在未来的研究中,需要确认这些模型可以推广到其他,即更短或更长的电极阵列。
所提出的植入电极触点定位方法也可能与具有类似边界条件的神经假体相关,如前庭植入物。