De Koninck Lance H, Vuong Kaleb S, Shin Seonghun, Powers Jeffry E, Averkiou Michalakis A
IEEE Trans Ultrason Ferroelectr Freq Control. 2025 Mar;72(3):351-361. doi: 10.1109/TUFFC.2025.3536932. Epub 2025 Mar 17.
In this study, we design and implement pulses [1.67 MHz, 20-1000 cycles, 0.8-2.5 MPa, and 5-100 ms pulse repetition time (PRT)] suitable for microbubble cavitation treatments with a phased array of a clinical ultrasound scanner. A range of acoustic parameters was evaluated in a tissue-mimicking phantom with suspended Sonazoid microbubbles. Hydrophone measurements were used to optimize the transmit beamforming. A passive cavitation detection (PCD) system was designed to measure the microbubble scattered signals over a 1 s exposure. Postprocessing of the scattered signals evaluated frequency content to extract broadband energy and calculate the inertial cavitation dose (ICD). ICD was maximized at 1000 cycles (maximum pulse length), 5 ms (fastest firing rate), and 2.5 MPa peak negative pressure (PNP) (maximum pressure). Inertial cavitation was only sustained for about three pulses (out of hundreds fired) occurring within the first 100 ms of treatment. Temporal analysis of the first 1000-cycle pulse revealed that broadband energy is sustained for the entire pulse. We also demonstrate that while inertial cavitation is possible with clinically available pulse wave Doppler settings, ICD can be significantly increased using the new conditions suggested in this work. We have delivered successful image-guided cavitation treatment after modifying a clinical scanner and monitored the cavitation dose with a PCD system on a gel phantom with suspended microbubbles. We plan to apply this technique in vivo in animal tumor models next. This work demonstrates the first implementation of long, high-pressure pulses on a clinical scanner that users can optimize for cavitation treatments.
在本研究中,我们设计并实现了适用于临床超声扫描仪相控阵微泡空化治疗的脉冲[1.67兆赫兹,20 - 1000个周期,0.8 - 2.5兆帕,以及5 - 100毫秒脉冲重复时间(PRT)]。在含有悬浮的声诺维微泡的仿组织体模中评估了一系列声学参数。使用水听器测量来优化发射波束形成。设计了一个被动空化检测(PCD)系统,用于在1秒暴露时间内测量微泡散射信号。对散射信号进行后处理,评估频率成分以提取宽带能量并计算惯性空化剂量(ICD)。ICD在1000个周期(最大脉冲长度)、5毫秒(最快发射率)和2.5兆帕峰值负压(PNP)(最大压力)时达到最大值。惯性空化仅在治疗的前100毫秒内发射的数百个脉冲中的约三个脉冲期间持续。对第一个1000周期脉冲的时间分析表明,宽带能量在整个脉冲期间持续。我们还证明,虽然使用临床可用的脉冲波多普勒设置可能实现惯性空化,但使用本工作中建议的新条件可显著提高ICD。在对临床扫描仪进行修改后,我们成功地进行了图像引导的空化治疗,并使用PCD系统在含有悬浮微泡的凝胶体模上监测了空化剂量。我们计划下一步在动物肿瘤模型中进行体内应用。这项工作展示了在临床扫描仪上首次实现长时、高压脉冲,用户可对其进行优化以用于空化治疗。