Liu Haozhou, Yang Banghua, Guan Shouliang, Rong Fenqi, Guo Mengao, Fang Ying, Liu Bingyu, Gao Yan, Gu Yong
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10782649.
Intracortical brain-computer interfaces (iBCIs) restore motor function in patients with paralysis by converting neural activity into control signals for external devices. However, the frequent recalibration required by current decoding methods due to turnover and loss of recording neurons poses a challenge for achieving stable online decoding. To address these issues, we propose a multi-source domain adversarial classification (MSDAC) framework for cross-day decoding that utilizes an out-of-distribution (OOD) generalization approach. This framework divides the historical data into source domains by date and employs adversarial networks to minimize the distribution discrepancies among multiple source domains, thereby achieving robust domain-invariant characteristics and superior performance on unseen test data. The MSDAC framework was evaluated using five months of monkey center-out neural activity data and demonstrated exceptional performance. Without relying on test day data for model calibration or parameter updating, the MSDAC achieved an average decoding accuracy of 84.38% (day-5 to day-150, 27968 trials). These results underscore that the MSDAC-based decoding framework can be an ideal choice for establishing stable iBCI systems.
皮层内脑机接口(iBCIs)通过将神经活动转换为外部设备的控制信号,来恢复瘫痪患者的运动功能。然而,由于记录神经元的更替和丢失,当前解码方法需要频繁重新校准,这对实现稳定的在线解码构成了挑战。为了解决这些问题,我们提出了一种用于跨日解码的多源域对抗分类(MSDAC)框架,该框架采用了分布外(OOD)泛化方法。此框架按日期将历史数据划分为源域,并利用对抗网络来最小化多个源域之间的分布差异,从而实现强大的域不变特征,并在未见测试数据上表现出卓越性能。使用五个月的猴子中心外神经活动数据对MSDAC框架进行了评估,结果显示其性能优异。在不依赖测试日数据进行模型校准或参数更新的情况下,MSDAC的平均解码准确率达到了84.38%(第5天至第150天,共27968次试验)。这些结果表明,基于MSDAC的解码框架可能是建立稳定iBCI系统的理想选择。