Suppr超能文献

使用具有洛马克斯分布的模糊随机运输问题框架优化住院时间和床位分配。

Optimizing hospital length of stay and bed allocation using a fuzzy stochastic transportation problem framework with lomax distribution.

作者信息

Kalpanapriya Dr D, Bhavana Pullooru

机构信息

Vellore Institute of Technology, India.

出版信息

MethodsX. 2025 Feb 12;14:103208. doi: 10.1016/j.mex.2025.103208. eCollection 2025 Jun.

Abstract

Managing hospital Length of Stay (LOS) is essential for improving patient flow and resource utilization. This study introduces the Fuzzy Stochastic Transportation Problem with Lomax Distribution (FSTPWLD) as a framework to address LOS variability. The Lomax distribution effectively represents heavy-tailed data, capturing the uncertainty and skewness typical of patient discharge times. By integrating this distribution into the FSTPWLD model, the study offers a novel method to predict and manage LOS under fluctuating demand and capacity. The model aims to minimize operational costs while maintaining high standards of patient care, using probabilistic constraints and objective functions. Numerical experiments and simulations demonstrate the effectiveness of our approach in improving resource allocation and reducing bottlenecks. The results highlight the potential of using advanced probabilistic models to enhance decision-making processes in healthcare management, providing a foundation for future research and practical applications in hospital administration. The model demonstrated its efficacy with a predicted New Average Length of Stay (New ALOS) achieving a mean absolute error (MAE) of ±5 ., significantly improving accuracy compared to traditional methods. Additionally, the integration of fuzzy and stochastic elements led to a 20 . reduction in bed allocation mismatches, optimizing resource utilization across hospital departments.•Novel Integration of Lomax Distribution in FSTPWLD: Utilizes the Lomax distribution to model heavy-tailed LOS data, capturing inherent uncertainty and variability in hospital discharge times.•Optimized Decision-Making for Healthcare Management: Employs probabilistic constraints and fuzzy stochastic models to balance operational costs and patient care quality, improving resource allocation.•Validated through Simulations and Practical Scenarios: Numerical experiments highlight the model's effectiveness in reducing bottlenecks and enhancing hospital administration efficiency.

摘要

管理医院住院时间(LOS)对于改善患者流程和资源利用至关重要。本研究引入了具有洛马克斯分布的模糊随机运输问题(FSTPWLD)作为解决住院时间变异性的框架。洛马克斯分布有效地表示重尾数据,捕捉患者出院时间典型的不确定性和偏度。通过将这种分布整合到FSTPWLD模型中,该研究提供了一种在需求和容量波动情况下预测和管理住院时间的新方法。该模型旨在使用概率约束和目标函数在维持高标准患者护理的同时最小化运营成本。数值实验和模拟证明了我们的方法在改善资源分配和减少瓶颈方面的有效性。结果突出了使用先进概率模型增强医疗管理决策过程的潜力,为医院管理的未来研究和实际应用奠定了基础。该模型通过预测的新平均住院时间(New ALOS)实现了±5的平均绝对误差(MAE),证明了其有效性,与传统方法相比显著提高了准确性。此外,模糊和随机元素的整合使床位分配不匹配减少了20%,优化了医院各科室的资源利用。

•洛马克斯分布在FSTPWLD中的新颖整合:利用洛马克斯分布对重尾住院时间数据进行建模,捕捉医院出院时间固有的不确定性和变异性。

•医疗管理的优化决策:采用概率约束和模糊随机模型来平衡运营成本和患者护理质量,改善资源分配。

•通过模拟和实际场景验证:数值实验突出了该模型在减少瓶颈和提高医院管理效率方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01a7/11872620/8680da88d777/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验