Suppr超能文献

基于短期运动任务的帕金森病状态分类的多尺度和多层次特征评估框架

Multi-Scale and Multi-Level Feature Assessment Framework for Classification of Parkinson's Disease State From Short-Term Motor Tasks.

作者信息

Peng Xiyang, Zhao Yuting, Li Ziheng, Wang Xulong, Nan Fengtao, Zhao Zhong, Yang Yun, Yang Po

出版信息

IEEE Trans Biomed Eng. 2025 Apr;72(4):1211-1224. doi: 10.1109/TBME.2024.3418688. Epub 2025 Mar 20.

Abstract

OBJECTIVE

Recent quantification research on Parkinson's disease (PD) integrates wearable technology with machine learning methods, indicating a strong potential for practical applications. However, the effectiveness of these techniques is influenced by environmental settings and is hardly applied in real-world situations. This paper aims to propose an effective feature assessment framework to automatically rate the severity of PD motor symptoms from short-term motor tasks, and then classify different PD severity levels in the real world.

METHODS

This paper identified specific PD motor symptoms using a novel feature-assessment framework at both segment-level and sample-level. Features were selected after calculating SHapley Additive exPlanation(SHAP) value, and verified by different machine learning methods with appropriate parameters. This framework has been verified on real-world data from 100 PD patients performing Unified Parkinson's Disease Rating Scale(UPDRS)-recommended short motor tasks, each task lasting 20-50 seconds.

RESULTS

The sensitivity for recognizing motor fluctuations reached 88% in tremor recognition. Additionally, LightGBM achieved the highest accuracy for early detection(92.59%) and achieved 71.58% in fine-grained severity classification using 31 selected features.

CONCLUSION

This paper reports the first effort to assess multi-level and multi-scale features for automatic quantification of motor symptoms and PD severity levels. The proposed framework has been proven effective in assessing key PD information for recognition during short-term tasks.

SIGNIFICANCE

The explanatory analysis of digital features in this study provides more prior knowledge for PD self-assessment in a free-living environment.

摘要

目的

近期关于帕金森病(PD)的量化研究将可穿戴技术与机器学习方法相结合,显示出很强的实际应用潜力。然而,这些技术的有效性受环境设置影响,难以应用于实际场景。本文旨在提出一个有效的特征评估框架,以便根据短期运动任务自动评定PD运动症状的严重程度,进而在现实世界中对不同的PD严重程度级别进行分类。

方法

本文在片段级和样本级使用一种新颖的特征评估框架来识别特定的PD运动症状。在计算SHapley Additive exPlanation(SHAP)值后选择特征,并通过具有适当参数的不同机器学习方法进行验证。该框架已在100名PD患者的真实数据上得到验证,这些患者执行统一帕金森病评定量表(UPDRS)推荐的短运动任务,每个任务持续20 - 50秒。

结果

在震颤识别中,识别运动波动的灵敏度达到88%。此外,LightGBM在早期检测中达到了最高准确率(92.59%),并使用31个选定特征在细粒度严重程度分类中达到了71.58%。

结论

本文首次尝试评估多层次和多尺度特征,以自动量化运动症状和PD严重程度级别。所提出的框架已被证明在评估短期任务期间用于识别的关键PD信息方面是有效的。

意义

本研究中数字特征的解释性分析为自由生活环境中的PD自我评估提供了更多先验知识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验