Peng Xiyang, Zhao Yuting, Li Ziheng, Wang Xulong, Nan Fengtao, Zhao Zhong, Yang Yun, Yang Po
IEEE Trans Biomed Eng. 2025 Apr;72(4):1211-1224. doi: 10.1109/TBME.2024.3418688. Epub 2025 Mar 20.
Recent quantification research on Parkinson's disease (PD) integrates wearable technology with machine learning methods, indicating a strong potential for practical applications. However, the effectiveness of these techniques is influenced by environmental settings and is hardly applied in real-world situations. This paper aims to propose an effective feature assessment framework to automatically rate the severity of PD motor symptoms from short-term motor tasks, and then classify different PD severity levels in the real world.
This paper identified specific PD motor symptoms using a novel feature-assessment framework at both segment-level and sample-level. Features were selected after calculating SHapley Additive exPlanation(SHAP) value, and verified by different machine learning methods with appropriate parameters. This framework has been verified on real-world data from 100 PD patients performing Unified Parkinson's Disease Rating Scale(UPDRS)-recommended short motor tasks, each task lasting 20-50 seconds.
The sensitivity for recognizing motor fluctuations reached 88% in tremor recognition. Additionally, LightGBM achieved the highest accuracy for early detection(92.59%) and achieved 71.58% in fine-grained severity classification using 31 selected features.
This paper reports the first effort to assess multi-level and multi-scale features for automatic quantification of motor symptoms and PD severity levels. The proposed framework has been proven effective in assessing key PD information for recognition during short-term tasks.
The explanatory analysis of digital features in this study provides more prior knowledge for PD self-assessment in a free-living environment.
近期关于帕金森病(PD)的量化研究将可穿戴技术与机器学习方法相结合,显示出很强的实际应用潜力。然而,这些技术的有效性受环境设置影响,难以应用于实际场景。本文旨在提出一个有效的特征评估框架,以便根据短期运动任务自动评定PD运动症状的严重程度,进而在现实世界中对不同的PD严重程度级别进行分类。
本文在片段级和样本级使用一种新颖的特征评估框架来识别特定的PD运动症状。在计算SHapley Additive exPlanation(SHAP)值后选择特征,并通过具有适当参数的不同机器学习方法进行验证。该框架已在100名PD患者的真实数据上得到验证,这些患者执行统一帕金森病评定量表(UPDRS)推荐的短运动任务,每个任务持续20 - 50秒。
在震颤识别中,识别运动波动的灵敏度达到88%。此外,LightGBM在早期检测中达到了最高准确率(92.59%),并使用31个选定特征在细粒度严重程度分类中达到了71.58%。
本文首次尝试评估多层次和多尺度特征,以自动量化运动症状和PD严重程度级别。所提出的框架已被证明在评估短期任务期间用于识别的关键PD信息方面是有效的。
本研究中数字特征的解释性分析为自由生活环境中的PD自我评估提供了更多先验知识。