Suppr超能文献

基于机器学习的帕金森病运动评估,使用众包智能手机数据的姿势摆动、步态和生活方式特征。

Machine learning-based motor assessment of Parkinson's disease using postural sway, gait and lifestyle features on crowdsourced smartphone data.

机构信息

Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609, United States of America.

出版信息

Biomed Phys Eng Express. 2020 Mar 4;6(3):035005. doi: 10.1088/2057-1976/ab39a8.

Abstract

OBJECTIVES

Remote assessment of gait in patients' homes has become a valuable tool for monitoring the progression of Parkinson's disease (PD). However, these measurements are often not as accurate or reliable as clinical evaluations because it is challenging to objectively distinguish the unique gait characteristics of PD. We explore the inference of patients' stage of PD from their gait using machine learning analyses of data gathered from their smartphone sensors. Specifically, we investigate supervised machine learning (ML) models to classify the severity of the motor part of the UPDRS (MDS-UPDRS 2.10-2.13). Our goals are to facilitate remote monitoring of PD patients and to answer the following questions: (1) What is the patient PD stage based on their gait? (2) Which features are best for understanding and classifying PD gait severities? (3) Which ML classifier types best discriminate PD patients from healthy controls (HC)? and (4) Which ML classifier types can discriminate the severity of PD gait anomalies?

METHODOLOGY

Our work uses smartphone sensor data gathered from 9520 patients in the mPower study, of whom 3101 participants uploaded gait recordings and 344 subjects and 471 controls uploaded at least 3 walking activities. We selected 152 PD patients who performed at least 3 recordings before and 3 recordings after taking medications and 304 HC who performed at least 3 walking recordings. From the accelerometer and gyroscope sensor data, we extracted statistical, time, wavelet and frequency domain features, and other lifestyle features were derived directly from participants' survey data. We conducted supervised classification experiments using 10-fold cross-validation and measured the model precision, accuracy, and area under the curve (AUC).

RESULTS

The best classification model, best feature, highest classification accuracy, and AUC were (1) random forest and entropy rate, 93% and 0.97, respectively, for walking balance (MDS-UPDRS-2.12); (2) bagged trees and MinMaxDiff, 95% and 0.92, respectively, for shaking/tremor (MDS-UPDRS-2.10); (3) bagged trees and entropy rate, 98% and 0.98, respectively, for freeze of gait; and (4) random forest and MinMaxDiff, 95% and 0.99, respectively, for distinguishing PD patients from HC.

CONCLUSION

Machine learning classification was challenging due to the use of data that were subjectively labeled based on patients' answers to the MDS-UPDRS survey questions. However, with use of a significantly larger number of subjects than in prior work and clinically validated gait features, we were able to demonstrate that automatic patient classification based on smartphone sensor data can be used to objectively infer the severity of PD and the extent of specific gait anomalies.

摘要

目的

远程评估患者家中的步态已成为监测帕金森病(PD)进展的有价值工具。然而,这些测量结果通常不如临床评估准确或可靠,因为客观地区分 PD 的独特步态特征具有挑战性。我们使用从智能手机传感器收集的数据来研究机器学习分析,从患者的步态中推断出他们的 PD 阶段。具体来说,我们研究了监督机器学习(ML)模型,以对 UPDRS 的运动部分(MDS-UPDRS 2.10-2.13)进行分类。我们的目标是促进 PD 患者的远程监测,并回答以下问题:(1)根据他们的步态,患者的 PD 阶段是什么?(2)哪些特征最适合理解和分类 PD 步态严重程度?(3)哪种 ML 分类器类型最能区分 PD 患者和健康对照(HC)?以及(4)哪种 ML 分类器类型可以区分 PD 步态异常的严重程度?

方法

我们的工作使用了来自 mPower 研究的 9520 名患者的智能手机传感器数据,其中 3101 名参与者上传了步态记录,344 名参与者和 471 名对照者至少上传了 3 次行走活动记录。我们选择了 152 名至少在服药前和服药后进行了 3 次记录的 PD 患者,以及至少进行了 3 次行走记录的 304 名 HC。我们从加速度计和陀螺仪传感器数据中提取了统计、时间、小波和频域特征,并直接从参与者的调查数据中提取了其他生活方式特征。我们使用 10 折交叉验证进行了监督分类实验,并测量了模型的精度、准确性和曲线下面积(AUC)。

结果

最佳分类模型、最佳特征、最高分类准确率和 AUC 分别为(1)随机森林和熵率,用于步行平衡(MDS-UPDRS-2.12),准确率为 93%和 0.97;(2)袋装树和 MinMaxDiff,用于震颤/颤抖(MDS-UPDRS-2.10),准确率为 95%和 0.92;(3)袋装树和熵率,用于冻结步态,准确率为 98%和 0.98;以及(4)随机森林和 MinMaxDiff,用于区分 PD 患者和 HC,准确率为 95%和 0.99。

结论

由于使用了基于患者对 MDS-UPDRS 调查问题的回答进行主观标记的数据,因此机器学习分类具有挑战性。然而,我们使用了比以前的工作和经过临床验证的步态特征数量显著更多的受试者,证明了基于智能手机传感器数据的自动患者分类可以用于客观推断 PD 的严重程度和特定步态异常的程度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验