Suppr超能文献

使用近红外光谱法监测药品连续生产线的校准负担评估

Evaluation of Calibration Burden for Monitoring of a Pharmaceutical Continuous Manufacturing Line using Near-Infrared Spectroscopy.

作者信息

Rish Adam J, Kurt Cassidy, Assis Joao Marcos, Rehrauer Owen, Rangel-Gil Raúl S, Taylor Edward

机构信息

Sentronic US Corp., 8 Saddle Road, Norwalk, CT 06851, USA.

GEA Pharmaceutical Technology Center, Columbia, MD 21045, USA.

出版信息

Int J Pharm. 2025 Mar 30;673:125419. doi: 10.1016/j.ijpharm.2025.125419. Epub 2025 Mar 2.

Abstract

Process analytical technology (PAT) tools are an important part of process monitoring and control in pharmaceutical continuous manufacturing (CM) that help ensure product quality. However, there is hesitancy to adopt PAT due, in part, to the high start-up costs. A portion of the cost is the calibration burden associated with developing an appropriate multivariate data analysis (MVDA) method to extract the desired information from the spectral outputs of spectroscopic PAT tools. This has generated research interest in reduced calibration burden MVDA methods, such as iterative optimization technology (IOT) algorithms, as alternatives to conventional modeling approaches like partial least squares (PLS) regression. The goal of the presented research is to compare the calibration burden of three different MVDA methods (direct IOT, indirect IOT, PLS regression) at two drug loading levels (low and high) of pharmaceutical powder blends in a CM line. The blends were binary mixtures consisting of an active pharmaceutical ingredient and a coprocessed excipient blend. The coprocessed excipient blend was leveraged to reduce formulation complexity and streamline process development, benefiting the application of IOT algorithm. Calibration burden was assessed in terms of time, material, and financial costs. Utilizing a near-infrared spectroscopic PAT tool, it was found that MVDA methods that utilized IOT algorithms demonstrated a notably reduced calibration burden compared to the PLS models, while predicting blend potency with similar accuracy.

摘要

过程分析技术(PAT)工具是制药连续制造(CM)中过程监测与控制的重要组成部分,有助于确保产品质量。然而,部分由于高昂的启动成本,人们对采用PAT存在犹豫。成本的一部分是与开发合适的多元数据分析(MVDA)方法相关的校准负担,以便从光谱型PAT工具的光谱输出中提取所需信息。这引发了对降低校准负担的MVDA方法的研究兴趣,例如迭代优化技术(IOT)算法,作为偏最小二乘(PLS)回归等传统建模方法的替代方案。本研究的目的是比较三种不同的MVDA方法(直接IOT、间接IOT、PLS回归)在CM生产线中药品粉末混合物的两种药物载量水平(低和高)下的校准负担。这些混合物是由活性药物成分和共处理辅料混合物组成的二元混合物。利用共处理辅料混合物来降低配方复杂性并简化工艺开发,有利于IOT算法的应用。从时间、材料和财务成本方面评估校准负担。使用近红外光谱PAT工具发现,与PLS模型相比,采用IOT算法的MVDA方法在校准负担方面显著降低,同时在预测混合物效力时具有相似的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验