Liu Depeng, Huang Ruirui, Lezcano Dimitri, Li Gang, Iordachita Iulian I
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-6. doi: 10.1109/EMBC53108.2024.10782105.
This study compares the effectiveness of the traditional minimum circle detection strategy, i.e. Welzl's algorithm, and the state-of-the-art nnU-Net in the localization of lumbar Epidural Steroid Injection (ESI) robot markers across different imaging modalities (MRI and CT). Fiducial frames and markers of identical design were used in both settings. To adjust for human errors in the benchmarking process, experiments were conducted to compare computational and manual marking results. Due to the complexity of the CT dataset, the accuracy and sensitivity of 3D nnU-Net were significantly superior to Welzl's algorithm. However, in the relatively simple MRI datasets, Welzl's algorithm outperformed the learning-based method. Subsequent experiments were conducted to validate that the localization accuracy meets the contingency requirements. This finding informs potential improvement in the current clinical workflow and the registration process of surgical robots in general.
本研究比较了传统的最小圆检测策略(即韦尔兹尔算法)与最先进的nnU-Net在不同成像模态(MRI和CT)下对腰椎硬膜外类固醇注射(ESI)机器人标记物进行定位的有效性。在两种情况下均使用了设计相同的基准框架和标记物。为了在基准测试过程中校正人为误差,进行了实验以比较计算标记结果和手动标记结果。由于CT数据集的复杂性,3D nnU-Net的准确性和灵敏度明显优于韦尔兹尔算法。然而,在相对简单的MRI数据集中,韦尔兹尔算法的表现优于基于学习的方法。随后进行了实验以验证定位精度是否符合应急要求。这一发现为当前临床工作流程以及一般手术机器人的配准过程的潜在改进提供了依据。
Annu Int Conf IEEE Eng Med Biol Soc. 2024-7
Spine (Phila Pa 1976). 2015-5-15
Phys Med Rehabil Clin N Am. 2018-2
Proc IEEE Inst Electr Electron Eng. 2022-7
IEEE Int Conf Robot Autom. 2020
Stereotact Funct Neurosurg. 2021
Int J Comput Assist Radiol Surg. 2019-10-17
Curr Pain Headache Rep. 2019-3-11
Int J Comput Assist Radiol Surg. 2018-8-11
Med Image Comput Comput Assist Interv. 2013