Suppr超能文献

重组体利用温和氢源进行钯纳米颗粒的靶向细胞内合成及全细胞催化的芳香醛氢化反应。

Recombinant Utilizes Mild Hydrogen Sources for the Targeted Intracellular Synthesis of Palladium Nanoparticles and Whole-Cell-Catalyzed Aromatic Aldehyde Hydrogenation.

作者信息

Liu Yu, Bi Shiyue, Song Zhanxin, Song Ziyi, Xu Chao, Xian Mo, Jin Miaomiao

机构信息

CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

Shandong Energy Institute, Qingdao 266101, China.

出版信息

ACS Appl Mater Interfaces. 2025 Mar 19;17(11):17238-17250. doi: 10.1021/acsami.4c21429. Epub 2025 Mar 4.

Abstract

Metal-enzyme cascade catalysis effectively combines the broad reactivity of chemical catalysis with the high selectivity of biocatalysis, improving reaction efficiency and simplifying the process flow through multiple sequential reactions in the same system. The introduction of exogenous palladium nanoparticles (Pd NPs) into () cells can significantly broaden the range of catalytic reactions facilitated by biological enzymes. Additionally, the targeted cytoplasmic synthesis of Pd NPs enhances their utilization efficiency in intracellular catalytic reactions while also eliminating the need for separating and purifying metals and enzymes. However, current methods largely enable the intracellular synthesis of Pd NPs in the periplasmic space and outer membrane. Moreover, the hydrogen sources commonly used in these methods─such as hydrogen (H) and sodium borohydride (NaBH)─carry safety risks. In this study, the mechanism of targeted synthesis of Pd NPs on the cytoplasmic side and its process were deeply investigated using a mild hydrogen source, sodium formate, in combination with genetic engineering and preparation conditions. And the constructed functional cell (Pd@) could catalyze benzaldehyde hydrogenation, with a conversion rate of 41.41% and benzyl alcohol yield of 17.68%, demonstrating considerable catalytic and loading stability. This study provides a reference for constructing catalytic systems for intracellular metal-enzyme cascades. Thus, it could bolster the development opportunities in the areas of non-natural products and drug development and provide ideas for addressing the drawbacks of existing biosynthetic technologies.

摘要

金属酶级联催化有效地将化学催化的广泛反应性与生物催化的高选择性结合起来,通过在同一系统中进行多个连续反应提高反应效率并简化工艺流程。将外源钯纳米颗粒(Pd NPs)引入()细胞可显著拓宽生物酶催化反应的范围。此外,Pd NPs的靶向胞质合成提高了它们在细胞内催化反应中的利用效率,同时也消除了分离和纯化金属与酶的需求。然而,目前的方法大多只能在周质空间和外膜中实现Pd NPs的细胞内合成。此外,这些方法中常用的氢源——如氢气(H)和硼氢化钠(NaBH)——存在安全风险。在本研究中,使用温和的氢源甲酸钠,结合基因工程和制备条件,深入研究了Pd NPs在胞质侧靶向合成的机制及其过程。构建的功能细胞(Pd@)能够催化苯甲醛加氢反应,转化率为41.41%,苯甲醇产率为17.6%,显示出相当的催化稳定性和负载稳定性。本研究为构建细胞内金属酶级联催化体系提供了参考。因此,它可以促进非天然产物和药物开发领域的发展机会,并为解决现有生物合成技术的缺点提供思路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验