Suppr超能文献

探索电子健康记录中的诊断之外的信息以改善发现:全表型关联研究综述

Exploring beyond diagnoses in electronic health records to improve discovery: a review of the phenome-wide association study.

作者信息

Wan Nicholas C, Grabowska Monika E, Kerchberger Vern Eric, Wei Wei-Qi

机构信息

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240, United States.

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37302, United States.

出版信息

JAMIA Open. 2025 Feb 28;8(1):ooaf006. doi: 10.1093/jamiaopen/ooaf006. eCollection 2025 Feb.

Abstract

OBJECTIVE

The phenome-wide association study (PheWAS) systematically examines the phenotypic spectrum extracted from electronic health records (EHRs) to uncover correlations between phenotypes and exposures. This review explores methodologies, highlights challenges, and outlines future directions for EHR-driven PheWAS.

MATERIALS AND METHODS

We searched the PubMed database for articles spanning from 2010 to 2023, and we collected data regarding exposures, phenotypes, cohorts, terminologies, replication, and ancestry.

RESULTS

Our search yielded 690 articles. Following exclusion criteria, we identified 291 articles published between January 1, 2010, and December 31, 2023. A total number of 162 (55.6%) articles defined phenomes using phecodes, indicating that research is reliant on the organization of billing codes. Moreover, 72.8% of articles utilized exposures consisting of genetic data, and the majority (69.4%) of PheWAS lacked replication analyses.

DISCUSSION

Existing literature underscores the need for deeper phenotyping, variability in PheWAS exposure variables, and absence of replication in PheWAS. Current applications of PheWAS mainly focus on cardiovascular, metabolic, and endocrine phenotypes; thus, applications of PheWAS in uncommon diseases, which may lack structured data, remain largely understudied.

CONCLUSIONS

With modern EHRs, future PheWAS should extend beyond diagnosis codes and consider additional data like clinical notes or medications to create comprehensive phenotype profiles that consider severity, temporality, risk, and ancestry. Furthermore, data interoperability initiatives may help mitigate the paucity of PheWAS replication analyses. With the growing availability of data in EHR, PheWAS will remain a powerful tool in precision medicine.

摘要

目的

全表型关联研究(PheWAS)系统地检查从电子健康记录(EHR)中提取的表型谱,以揭示表型与暴露之间的相关性。本综述探讨了相关方法,强调了挑战,并概述了由电子健康记录驱动的全表型关联研究的未来方向。

材料与方法

我们在PubMed数据库中搜索了2010年至2023年期间的文章,并收集了有关暴露、表型、队列、术语、重复验证和血统的数据。

结果

我们的搜索产生了690篇文章。根据排除标准,我们确定了2010年1月1日至2023年12月31日期间发表的291篇文章。共有162篇(55.6%)文章使用疾病编码定义表型组,这表明研究依赖于计费代码的组织。此外,72.8%的文章使用了包含基因数据的暴露因素,并且大多数(69.4%)的全表型关联研究缺乏重复验证分析。

讨论

现有文献强调了深入表型分析的必要性、全表型关联研究暴露变量的变异性以及全表型关联研究中缺乏重复验证。全表型关联研究的当前应用主要集中在心血管、代谢和内分泌表型;因此,全表型关联研究在可能缺乏结构化数据的罕见疾病中的应用仍 largely未得到充分研究。

结论

借助现代电子健康记录,未来的全表型关联研究应超越诊断代码,考虑临床笔记或药物等额外数据,以创建综合的表型概况,同时考虑严重程度、时间性、风险和血统。此外,数据互操作性计划可能有助于缓解全表型关联研究重复验证分析的不足。随着电子健康记录中数据的日益丰富,全表型关联研究仍将是精准医学中的一个强大工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1da3/11879097/dd4ef403f1f4/ooaf006f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验